#本质:统计每个像素灰度出现概率 0-255
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('car.jpg', 1) #读取图片
imgInfo = img.shape #维度信息
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #转灰度
count = np.zeros(256, np.float)
for i in range(0, height):
for j in range(0, width):
pixel = gray[i, j] #获取每一个像素
index = int(pixel)
count[index] = count[index] + 1 #灰度统计
for i in range(0, 255):
count[i] = count[i]/(height * width)
x = np.linspace(0, 255, 256) #0-255共256个
y = count
plt.bar(x, y, 0.9, alpha=1, color='b')
plt.show()
cv2.waitKey(0)
#本质:统计每个像素灰度出现概率 0-255
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('car.jpg', 1) #读取图片
imgInfo = img.shape #维度信息
height = imgInfo[0]
width = imgInfo[1]
#gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #转灰度
count_b = np.zeros(256, np.float)
count_g = np.zeros(256, np.float)
count_r = np.zeros(256, np.float)
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j] #获取每一个像素
index_b = int(b)
index_g = int(g)
index_r = int(r)
count_b[index_b] = count_b[index_b] + 1 #颜色统计
count_g[index_g] = count_g[index_g] + 1
count_r[index_r] = count_r[index_r] + 1
for i in range(0, 255):
count_b[i] = count_b[index_b]/(height * width)
count_g[i] = count_g[index_g] / (height * width)
count_r[i] = count_r[index_r] / (height * width)
x = np.linspace(0, 255, 256) #0-255共256个
y1 = count_b
plt.figure()
plt.bar(x, y1, 0.9, alpha=1, color='b')
y2 = count_g
plt.figure()
plt.bar(x, y2, 0.9, alpha=1, color='g')
y3 = count_r
plt.figure()
plt.bar(x, y3, 0.9, alpha=1, color='r')
plt.show()
cv2.waitKey(0)
欢迎关注微信公众号“源起1024”或扫描下方二维码获取更多学习资源