io流

本文详细介绍了Java中的IO流概念及分类,包括字节流与字符流的区别,节点流与处理流的工作方式,以及不同类型的输入输出流如FileInputStream、FileOutputStream、BufferedInputStream等的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IO流:
1:File,RandomAccessFile都在java.io包。
  IO流的一系列类型也都在此包下。
2:
    输出(output):  从程序中把数据写出到外界.
    输入(input):  从外界读取数据到程序中。
3:流的分类
   (1)按照读写数据的单位大小分类:
     字节流
     字符流
   (2)按照读写时是否与外界设备(硬盘,内存)等节点直接连接。
             节点流:直接与外界设备关联的流。
             处理流:不是直接与外界设备相关联,一般都是以节点流
                           为参数的
   (3)按照处理效率分类
             低级流
             高级流
4:
  InputStream:是字节输入流的父类(抽象类型)
  OutputStream:是字节输出流的父类(抽象类型)
  Reader:是字符输入流的父类(抽象类型)
  Writer:是字符输出流的父类(抽象类型)
5:文件输入输出流:(字节流)
    FileOutputStream
           构造器:FileOutputStream(File file)
            FileOutputStream(String filepath)
    
    
    FileInputStream
            构造器:
            FileInputStream(File file)
            FileInputStream(String filepath)
          
      常用方法:    
    write(int num):
      写num二进制的低八位
write(byte[] bytes)
write(byte[] bytes,int index,int length)       
    
    int read():
读取一个字节,放入int类型的低八位上
read(byte[] bytes):
读取有效个字节,存入字节数组中。

    注意:输出流会帮助创建文件,而输入流不会。

1:文件输出输入字节流
   FileInputStream
   FileOutputStream
   构造器的特点:
   输出流的构造器
      []:表示可有可无
      FileOutputStream(File file[,boolean append])
      FileOutputStream(String filepath[,boolean append])
  输入流的构造器:
      FileInputStream(File file)
      FileInputStream(String filepath) 
 2:缓冲字节流:设计了一个缓冲区的机制。读写效率高
   BufferedOutputStream的构造器
     BufferedOutputStream(OutputStream os)
   BufferedInputStream的构造器
     BufferedInputStream(InputStream is)
     
 3:DataOutpuStream和DataInputStream
      数据输入输出流 
   构造器都要传参:传入的是一个字节流。   
      DataOutpuStream(OutputStream os)
      DataInputStream(InputStream is)
 4:对象输入输出流:
   ObjectOutputStream和ObjectInputStream
       构造器都要传参:传入的是一个字节流 
   作用:
        对象输出流:是将对象转换成一串字节序列(序列化)
        对象输入流: 是将一串字节转换成对象(反序列化)
        
      序列化时应注意的特点:
      1:被序列化的对象的类型必须实现Serializable接口      
      2:提供序列化版本号的属性。
        (以防类型被改变后不能反序列的问题出现-兼容性问题)
   序列化的修饰词:transient
                    作用是:对象的某些属性没必要持久化时,可以在类型的
                                 这些属性前添加此修饰词 
 
字符流:读写时都是以字符为单位进行的。
1:字符流的父类:
       输出流:Writer
       输入流:Reader
2:OutputStreamWriter:
      构造器如下:
      输出流的构造器:
     OutputStreamWriter(OutputStream os)
     OutputStreamWriter(OutputStream os,String charset)
 InputStreamReader:
 构造器如下:
 输入流的构造器:
InputStreamReader(InputStream is[,String charset])
3:缓冲字符流:
  BufferedWriter
     字符输出缓冲流

     构造器:


<think>好的,我现在要处理用户关于Android 12中RKNN开发配置和使用教程的问题。首先,我需要回顾用户提供的引用内容,看看是否有相关的信息。 用户提供了三个引用。引用1提到了RKNN Model Zoo和RKNN Toolkit2的环境配置,包括安装Miniconda3。引用2是关于系统镜像下载,特别是Ubuntu 22.04版本和导出ONNX模型。引用3讨论了RV1808/1126使用RKNN作为MediaPipe推理后端的步骤,包括配置参数如use_rga、use_mmap和data_type的设置,以及反量化的处理。 用户的问题集中在Android 12上,所以需要将引用中的信息与Android系统关联起来。引用3提到了MediaPipe和RKNN的集成,这可能适用于Android开发,但需要确认是否支持Android 12。此外,RKNN Toolkit2的环境配置可能在不同平台上有所不同,用户可能需要针对Android进行调整。 接下来,我需要考虑Android开发中RKNN的一般步骤,比如环境准备、模型转换、集成到Android应用、配置参数和性能优化。结合引用中的信息,模型转换部分可以参考引用2提到的导出ONNX模型,然后使用RKNN Toolkit转换为RKNN格式。引用3中的配置参数(如use_rga、use_mmap、data_type)可能在Android中同样适用,但需要查阅相关文档确认。 可能还需要指导用户如何将RKNN库集成到Android项目中,比如添加依赖项或NDK配置。此外,性能优化方面,引用3提到的反量化处理可能需要特别注意,尤其是在Android设备上的实现。 最后,确保回答结构清晰,分步骤说明,并引用提供的资料。需要验证引用中的信息是否适用于Android 12,例如系统镜像是否支持,或者是否有特定版本的要求。如果某些步骤在引用中没有明确说明,可能需要提示用户参考官方文档或社区资源。</think>### Android 12 RKNN 开发配置与使用教程 #### 1. **环境准备** - **系统镜像与工具链**: 根据引用[2],建议使用Ubuntu 22.04作为开发环境,并下载Orange Pi 5 Pro等支持RKNN的硬件镜像。对于Android 12开发,需确保RKNN Toolkit2适配Android NDK版本(推荐NDK 21+)[^2]。 - **安装RKNN Toolkit2**: 参考引用[1],通过Miniconda3配置Python环境(建议Python 3.8),并安装RKNN Toolkit2以支持模型转换与推理。命令示例: ```bash pip install rknn_toolkit2 ``` #### 2. **模型转换(ONNX转RKNN)** - **导出ONNX模型**: 使用PyTorch或TensorFlow等框架导出模型为ONNX格式(引用[2])。 - **转换为RKNN格式**: 编写RKNN配置文件(`config.yml`),指定输入尺寸、量化方式等参数。示例代码: ```python from rknn.api import RKNN rknn = RKNN() rknn.config(target_platform='rk3568', mean_values=[[127.5]], std_values=[[127.5]]) rknn.load_onnx(model="model.onnx") rknn.build(do_quantization=True, dataset="dataset.txt") rknn.export_rknn("model.rknn") ``` #### 3. **Android项目集成** - **添加RKNN库依赖**: 将编译好的RKNN动态库(`librknnrt.so`)和模型文件(`model.rknn`)放入Android项目的`jniLibs`目录。 - **JNI接口开发**: 通过JNI调用RKNN的C/C++ API实现推理。关键配置参考引用[3]: ```cpp #include <rknn/rknn_runtime.h> rknn_context ctx; int ret = rknn_init(&ctx, model_path, 0, 0, nullptr); ret = rknn_inputs_set(ctx, input_num, input_attrs); ret = rknn_run(ctx, nullptr); ret = rknn_outputs_get(ctx, output_num, output_attrs, nullptr); ``` #### 4. **关键配置参数** - **use_rga与use_mmap**: 根据引用[3],若Android设备不支持硬件加速(如RGA),需将`use_rga`和`use_mmap`设为`false`。 - **数据量化类型**: `data_type`可选`uint8`或`fp32`。若选`uint8`,需手动实现反量化;若选`fp32`,RKNN会自动处理[^3]。 #### 5. **性能优化** - **多线程推理**: 利用Android的`ThreadPoolExecutor`并行处理输入数据。 - **内存优化**: 启用`use_mmap`(若支持)减少内存拷贝开销,或通过零拷贝技术直接操作物理内存。 #### 6. **调试与验证** - **日志输出**: 启用RKNN的调试模式(`RKNN_LOG_LEVEL=DEBUG`)查看详细运行信息。 - **性能分析**: 使用`rknn.query(RKNN_QUERY_PERF_DETAIL)`获取各层耗时,针对性优化模型结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值