首先计算出对称轴:(最左边的横坐标+最右边的横坐标)/ 2 因为存在对称轴的话肯定是以俩个端点的对称轴为目标
然后遍历所有点,看每个点是否有它所对称的那个点,这个用set查找,提前输入时将所有点都放入set集合中
如果都能找到即为YES否则NO;
其中用到了pair,同时将x y轴坐标存入set集合,存x坐标时,所有点都乘二,避免除二时出现小数。
1595 - Symmetry
The figure shown on the left is left-right symmetric as it is possible to fold the sheet of paper along a vertical line, drawn as a dashed line, and to cut the figure into two identical halves. The figure on the right is not left-right symmetric as it is impossible to find such a vertical line.
Write a program that determines whether a figure, drawn with dots, is left-right symmetric or not. The dots are all distinct.
Input
The input consists of T test cases. The number of test cases T is given in the first line of the input file. The first line of each test case contains an integer N , where N ( 1N1, 000) is the number of dots in a figure. Each of the following N lines contains the x-coordinate and y-coordinate of a dot. Both x-coordinates and y-coordinates are integers between -10,000 and 10,000, both inclusive.
Output
Print exactly one line for each test case. The line should contain `YES' if the figure is left-right symmetric. and `NO', otherwise.
The following shows sample input and output for three test cases.
Sample Input
3
5
#include<iostream>
#include<set>
using namespace std;
const int maxn=10005;
typedef pair <int,int> point;
set<point> xy;
int x[maxn],y[maxn],zhou;
int ok(int i,int n)
{
int j;
for(j=0;j<n;j++)
if(y[i]==y[j] && (x[i]+x[j])/2==zhou) return 1;
return 0;
}
int main()
{
int t,n,i,j;
cin>>t;
while(t--)
{
int minx=999999,maxx=-999999;
cin>>n;
for(i=0;i<n;i++)
{
cin>>x[i]>>y[i];
x[i]*=2;
xy.insert(point(x[i],y[i]));
minx = min(minx,x[i]);
maxx = max(maxx,x[i]);
}
zhou=(minx+maxx)/2;
for(i=0;i<n;i++)
{
if(!ok(i,n))
break;
}
if(i>=n)
cout<<"yes"<<endl;
else
cout<<"no"<<endl;
}
}
-2 5
0 0
6 5
4 0
2 3
4
2 3
0 4
4 0
0 0
4
5 14
6 10
5 10
6 14
Sample Output
YES
NO
YES