
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F #选择激活函数
import torch.optim as optim #选择优化器
import matplotlib.pyplot as plt
#准备数据
batch_size=64
trans=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])
#数据载入
train_dataset=datasets.MNIST(root='../MNNIST/mnist/',train=True,download=True,transform=trans)
train_loader=DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
test_dataset=datasets.MNIST(root='../MNNIST/mnist/',train=False,download=True,transform=trans)
test_loader=DataLoader(test_dataset,shuffle=True,batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear1 = torch.nn.Linear(784, 512)
self.linear2 = torch.nn.Linear(512, 64)
self.linear3 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x) #最后输出不用进入线性层
return x
model=Net()
x=[]
criterion=torch.nn.CrossEntropyLoss() #计算损失
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5) #momentum带冲量的???
def train(epoch):
running_loss=0.0
for batch_idx,data in enumerate(train_loader,0):
input,targe=data
optimizer.zero_grad()
output=model(input)
loss=criterion(output,targe)
loss.backward()
optimizer.step()
running_loss+=loss.item() #计算输出
x.append(loss.item())
if batch_idx%300==299:
print("[%d,%d] loss: %.4f" % (epoch+1,batch_idx+1,running_loss/300))
running_loss=0
def test():
correct=0
total=0
with torch.no_grad():
for data in test_loader:
images,labels=data
outputs=model(images)
_,predicted=torch.max(outputs.data,dim=1) #数据和数据下标
total+=labels.size(0) # N*1 0即为数量
correct+=(predicted==labels).sum().item()
print("Accuracy on test set: %d %%" % (100*correct/total))
if __name__=='__main__':
for epoch in range(1):
train(epoch)
test()
plt.plot(x, label='Train_loss')
plt.title('Train_loss')
plt.show()