剪绳子

题目描述

  给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

解题思路

  很典型的动态规划,规划方程dp[i]=max(dp[k]*dp[i-k])。这里记录一下看到的另一种很有意思的解法。
  首先先举几个例子:

 * 42*2
 * 52*3
 * 63*3
 * 72*2*3 或者4*3
 * 82*3*3
 * 93*3*3
 * 102*2*3*3 或者4*3*3
 * 112*3*3*3
 * 123*3*3*3
 * 132*2*3*3*3 或者4*3*3*3

其实k[i]只可能是2或3,如果是其他的数,比如4,可以直接换成2x2,而如果是7,3x2x2>7,8:3x3x2>8,又因为2x2x2<3x3,所以一定是优先满足3的个数,这样可以直接用num/3,然后根据余数判断2的个数。

实现代码

long long n_max_3(long long n) {
    if (n == 2) { //2种特殊情况
        return 1;
    }
    if (n == 3) {
        return 2;
    }
    long long x = n % 3;
    long long y = n / 3;
    if (x == 0) {
        return pow(3, y);
    } else if (x == 1) {
        return 2 * 2 * (long long) pow(3, y - 1); //拿出一个3和1构成2*2,因为1*3<2*2
    } else {
        return 2 * (long long) pow(3, y); 
    }
}
### 贪心算法实现 贪心算法的思路是尽可能多地出长度为3的绳子段,因为当绳子长度大于等于5时,出长度为3的段可以获得更大的乘积。当剩下的长度为4时,将其成两个2的段,这样可以获得更大的乘积[^2]。 ```cpp #include <iostream> #include <cmath> class Solution { public: int cutRope(int number) { if(number < 2) return 0; if(number == 2) return 1; if(number == 3) return 2; int countOf3 = number / 3; if (number - countOf3 * 3 == 1) { countOf3--; return static_cast<int>(pow(3, countOf3)) * 4; } if (number - countOf3 * 3 == 2) { return static_cast<int>(pow(3, countOf3)) * 2; } return static_cast<int>(pow(3, countOf3)); } }; int main() { Solution sol; std::cout << sol.cutRope(10) << std::endl; // 输出 36 return 0; } ``` ### 动态规划实现 动态规划的思路是将绳子长度从1到n的所有可能法都计算出来,并存储在数组中。对于每个长度i,遍历所有可能的法j(从1到i-1),并计算j*(i-j)和dp[j]*(i-j)的乘积,取最大值作为dp[i]的值[^1]。 ```cpp #include <iostream> #include <vector> #include <algorithm> class Solution { public: int cutRope(int number) { if (number < 2) return 0; if (number == 2) return 1; if (number == 3) return 2; std::vector<int> dp(number + 1, 0); for (int i = 1; i <= number; ++i) { for (int j = 1; j < i; ++j) { dp[i] = std::max(dp[i], std::max(j * (i - j), j * dp[i - j])); } } return dp[number]; } }; int main() { Solution sol; std::cout << sol.cutRope(10) << std::endl; // 输出 36 return 0; } ``` ### 总结 - **贪心算法**:适用于较大的绳子长度,时间复杂度为O(1),但需要数学推导来证明最优解。 - **动态规划**:适用于较小的绳子长度,时间复杂度为O(n^2),但不需要数学推导。 两种方法都可以有效地解决绳子问题,选择哪种方法取决于具体的应用场景和对时间复杂度的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值