120. Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
典型的动态规划问题 数字三角形
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int m = triangle.size();
int n = triangle[m-1].size();
vector<int> dp(triangle[n-1]);
for(int i=n-1;i>0;i--)
{
for(int j=0;j<i;j++)
{
dp[j] = min(dp[j],dp[j+1])+triangle[i-1][j];
}
}
return dp[0];
}
};