42. 接雨水


给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。

示例:

输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6
class Solution(object):
    def trap(self, height):
        """
        :type height: List[int]
        :rtype: int
        """
        if len(height) < 3:
            return 0
        
        length = len(height)
        res = 0
        # 最左边和最右边的值作为基准值
        fl = height[0]
        lr = height[length - 1]
        # 两个指针分别放在基准值前
        left = 1
        right = length - 2
        
        while left <= right:
            # 始终找小的一边进行操作
            if fl < lr:
                if fl < height[left]:
                    fl = height[left]
                else:
                    res += fl - height[left]
                # 两指针向中间靠拢
                left += 1
            else:
                if lr < height[right]:
                    lr = height[right]
                else:
                    res += lr - height[right]
                right -= 1
                
        return res

 

### 关于雨水问题的 Java 实现 雨水问题是经典的算法题目之一,其核心在于通过某种方式计算柱子之间的凹槽部分能够存储的水量。以下是基于 **单调栈** 和 **双指针法** 的两种常见解决方案。 --- #### 方法一:单调栈实现 单调栈是一种有效的数据结构用于处理此类区间极值问题。具体逻辑如下: 1. 使用 `Stack<Integer>` 存储柱子索引。 2. 遍历数组中的每一个柱子高度,当遇到当前柱子高于栈顶柱子时,则说明形成了一个可以积水的区域。 3. 计算该区域内的积水量并累加到总结果中。 下面是完整的代码实现: ```java import java.util.Stack; class Solution { public int trap(int[] height) { Stack<Integer> stack = new Stack<>(); int res = 0; for (int i = 0; i < height.length; i++) { while (!stack.isEmpty() && height[i] > height[stack.peek()]) { int top = stack.pop(); // 当前要计算面积的位置 if (stack.isEmpty()) break; int distance = i - stack.peek() - 1; // 左右边界距离 int boundedHeight = Math.min(height[i], height[stack.peek()]) - height[top]; res += distance * boundedHeight; } stack.push(i); } return res; } } ``` 这种方法的时间复杂度为 O(n),空间复杂度也为 O(n)[^1]。 --- #### 方法二:双指针优化 双指针法利用两个变量分别记录左侧最大值和右侧最大值,在遍历时逐步更新这些值,并根据当前位置的高度差来决定是否增加水体积。 以下是具体的代码实现: ```java class Solution { public int trap(int[] height) { int left = 0, right = height.length - 1; int lMax = 0, rMax = 0; int water = 0; while (left < right) { if (height[left] < height[right]) { if (height[left] >= lMax) { lMax = height[left]; } else { water += lMax - height[left]; } left++; } else { if (height[right] >= rMax) { rMax = height[right]; } else { water += rMax - height[right]; } right--; } } return water; } } ``` 这种解法时间复杂度同样为 O(n),但仅需常量级额外空间 O(1)[^2]。 --- #### 提供的代码分析 对于您给出的代码片段[^3],存在一些潜在改进之处: - 函数 `maxRight` 被多次调用,每次都会重新扫描右边的最大值,增加了不必要的开销。 - 可以考虑采用上述提到的方法进一步提升效率。 --- ### 总结 无论是使用单调栈还是双指针方法都可以高效解决问题。前者更直观易懂;后者则更加节省内存资源。实际应用可根据需求选择合适的方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值