1004 Counting Leaves (30 分)
A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N<100, the number of nodes in a tree, and M (<N), the number of non-leaf nodes. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a given non-leaf node, K
is the number of its children, followed by a sequence of two-digit ID
's of its children. For the sake of simplicity, let us fix the root ID to be 01
.
The input ends with N being 0. That case must NOT be processed.
Output Specification:
For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.
The sample case represents a tree with only 2 nodes, where 01
is the root and 02
is its only child. Hence on the root 01
level, there is 0
leaf node; and on the next level, there is 1
leaf node. Then we should output 0 1
in a line.
Sample Input:
2 1
01 1 02
Sample Output:
0 1
思路:
可以通过dfs 和 bfs两种方式实现:
dfs 思路:将一条路走通, 当走不通时再回溯
bfs 思路:每次走一步,将所有一步可以到达的路径先后放入队列中,当队列不为空时,将队列的第一个元素出队,
当找到一个结点没有子结点时,叶子个数+1;
用二维向量容器存储树:a[i][j] = k;//表示 id 为 i的结点的第j个孩子结点的 id为k
dfs代码实现:
#include<iostream>
#include<vector>
//本题思路就是判断 每层的叶子结点(不存在其它的子结点)有多少个
using namespace std;
vector<int>a[100]; //定义二维向量数组存储树(图)结构
int n, m, hmax = -1, h, level[100]; // 也可不做处理 ,hmax = -1 题目中告诉了 n = 1时不做处理
//level[i]表示存储高度为i的叶子结点个数
int pid, k, cid; //表示表此时结点的id 子结点的个数,孩子结点的Id
void dfs(int start, int h){ //dfs遍历 (start,h)
hmax = max(hmax, h);
if(a[start].size() == 0) { //当size == 0表示结点没有连接任何一个结点 表示不存在下一个结点 此时此高度叶子结点数++
level[h]++; //h为此时的高度,
return;
}
for(int i = 0; i < a[start].size(); i++){
dfs(a[start][i], h + 1);//保留此时的h高度 ,回溯时高度依然是此时的高度
}
}
int main(){
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++){
scanf("%d%d", &pid, &k);
for(int j = 0; j < k; j++){
scanf("%d", &cid);
a[pid].push_back(cid);
}
}
dfs(1, h);
for(int i = 0; i <= hmax; i++){
if(i != 0)
printf(" ");
printf("%d", level[i]);
}
return 0;
}
bfs代码实现:
#include<iostream>
#include<queue>
#include<vector>
/**
dfs 思路:将一条路走通, 当走不通时再回溯
bfs 思路:每次走一步,将所有一步可以到达的路径先后放入队列中,当队列不为空时,将队列的第一个元素出队,
//判断是否有一步可以到达的点,将其放入队列中.
**/
using namespace std;
struct Node{
int to;
int h;
};
int n, m;
int pid, k, cid, hmax, level[100];
vector<int> a[100];
queue<Node> q; //将对应结点的编号加入进队列中
void bfs(int start){ //当
q.push({start, 0});
while(!q.empty()){
Node node = q.front();
q.pop();
if(a[node.to].size()==0){
level[node.h]++; //
continue;
}
hmax = node.h + 1; //当结点不为叶子节点时,此叶子结点的高度为此时结点的高度 + 1
for(int i = 0; i < a[node.to].size(); i++){
q.push({a[node.to][i], hmax});
}
}
}
int main(){
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++){
scanf("%d%d", &pid, &k);
for(int j = 0; j < k; j++){
scanf("%d", &cid);
a[pid].push_back(cid);
}
}
bfs(1);
for(int i = 0; i <= hmax; i++){
if(i != 0)
printf(" ");
printf("%d", level[i]);
}
return 0;
}