Windows下anaconda+pycharm安装tensorflow,matplotlib,numpy

本文详细介绍如何使用Anaconda和PyCharm安装TensorFlow、matplotlib、numpy等库,特别针对Python 3.6环境。文章提供具体步骤,包括解决Intel MKL错误的方法,确保在Python环境中顺利运行神经网络示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

anaconda+pycharm安装tensorflow,matplotlib,numpy,网上有关的教程很多,但经过我亲生经历,我的不能用,如果你使用的python3.6,那么请按照我的步骤,进行,

anaconda是一个非常厉害的python的库管理器,但是有时候也会引起很大的麻烦,下面我说一下我的安装思路
1.首先你要安装anaconda和配置anaconda的环境变量(网上教程很多),
2.打开你的anaconda的anaconda prompt命令符,输入一下的命令
conda create -n tensorflow python=3.6
activate tensorflow
conda install pandas matplotlib jupyter notebook scipy scikit-learn nltk
conda install -c conda-forge tensorflow keras
这里说一下最好安装python3.5或者python3.6,不然很麻烦。。。。。

安装后打开pycharm并配置解释器,运行

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 使用numpy生成200个随机点
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
noise = np.random.normal(0, 0.02, x_data.shape)
y_data = np.square(x_data) + noise

# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])

# 构建神经网络中间层
Weights_l1 = tf.Variable(tf.random_normal([1, 10]))  # 1 10
biases_l1 = tf.Variable(tf.zeros([1, 10]))
Wx_plus_b_l1 = tf.matmul(x, Weights_l1) + biases_l1
Li = tf.nn.tanh(Wx_plus_b_l1)

# 定义神经网络输出层
Weights_l2 = tf.Variable(tf.random_normal([10, 1]))
biases_l2 = tf.Variable(tf.zeros([1, 1]))
Wx_plus_b_l2 = tf.matmul(Li, Weights_l2) + biases_l2
prediction = tf.nn.tanh(Wx_plus_b_l2)

# 二次代价函数(方差)
loss = tf.reduce_mean(tf.square(y - prediction))
# 梯度下降法
train_stop = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    # 变量的初始化
    sess.run(tf.global_variables_initializer())
    for step in range(2000):
        sess.run(train_stop, feed_dict={x: x_data, y: y_data})
    # 获得预测值
    prediction_value = sess.run(prediction, feed_dict={x: x_data})
    # 画图
    plt.figure()
    plt.scatter(x_data, y_data)
    plt.plot(x_data, prediction_value, 'r-', lw=5)
    plt.show()
这里这时会报

Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll.
这个错误的解决方案时,打开命令符输入where mkl_rt
这里可以看到一个路径,这个路径就是你之前安装anaconda时的添加的环境变量,然后在环境变量中去除这个路径,然后在命令符重新输入where mkl_rt ,如果出现“信息: 用提供的模式无法找到文件”,说明你成功了,重启pycharm运行上面的py代码,就可以看到程序成功运行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值