本次实验使用STM32F103C86芯片完成对SD卡的数据写入(FAT32文件模式)
一、SD卡模块简介
根绝百度百科上的解释:SD卡_百度百科 (baidu.com)
SD存储卡是一种基于半导体快闪记忆器的新一代记忆设备,由于它体积小、数据传输速度快、可热插拔等优良的特性,被广泛地于便携式装置上使用,例如数码相机、平板电脑和多媒体播放器等。
读者可以参考网络资源了解SD卡,下文参考正点原子STM32不完全手册。SD卡按容量分类,可以将SD卡分为3类:SD卡、SDHC卡、SDXC卡。SD卡一般支持两种操作模式:1.SD卡模式;2.SPI模式。SD卡的引脚排序如下图所示:
SD卡引脚功能描述如下表所示:
针脚 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
SD卡模式 | CD/DAT3 | CMD | VSS | VCC | CLK | VSS | DAT0 | DAT1 | DAT2 |
SPI模式 | CS | MOSI | VSS | VCC | CLK | MISO | NC | NC |
SD卡有5个寄存器,如下表所示:
名称 | 宽度 | 描述 |
---|---|---|
CID | 128 | 卡标识寄存器 |
RCA | 16 | 相对卡地址(Relative card address)寄存器:本地系统中卡的地址,动态变化,在主机初始化的时候确定 *SPI模式没有 |
CSD | 128 | 卡描述数据:卡操作条件相关的信息数据 |
SCR | 64 | SD配置寄存器:SD卡特定信息数据 |
OCR | 32 | 操作条件寄存器 |
本次实验采用的是TF卡(micro SD卡),实验电路图可以参考
Altium Designer绘制STM32F103C8T6及SD卡模块原理图_江南烟浓雨的博客-优快云博客
二、创建工程
打开STM32CubeMX,然后新建工程,GPIO口配置如下:
创建好工程文件后,需要添加一些文件,工程文件的资料如下:
链接:https://pan.baidu.com/s/1pB3ej6bgFV_ncmJYylAaXQ
提取码:1234
其中main.c主程序,代码如下:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "SDdriver.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (unsigned char *)&ch, 1, 0xFFFF);
return ch;
}
uint16_t uart_value[3];
uint8_t aRxBuffer1; //uart rx buff
void WritetoSD(BYTE write_buff[],uint8_t bufSize);
char SD_FileName[] = "hello.txt";
uint8_t WriteBuffer[] = "01 write buff to sd \r\n";
//uint8_t test_sd =0; //用于测试格式化
uint8_t write_cnt =0; //写SD卡次数
void WritetoSD(BYTE write_buff[],uint8_t bufSize)
{
FATFS fs;
FIL file;
uint8_t res=0;
UINT Bw;
res = SD_init(); //SD卡初始化
if(res == 1)
{
printf("SD卡初始化失败! \r\n");
}
else
{
printf("SD卡初始化成功! \r\n");
}
res=f_mount(&fs,"0:",1); //挂载
// if(test_sd == 0) //用于测试格式化
if(res == FR_NO_FILESYSTEM) //没有文件系统,格式化
{
// test_sd =1; //用于测试格式化
printf("没有文件系统! \r\n");
res = f_mkfs("", 0, 0); //格式化sd卡
if(res == FR_OK)
{
printf("格式化成功! \r\n");
res = f_mount(NULL,"0:",1); //格式化后先取消挂载
res = f_mount(&fs,"0:",1); //重新挂载
if(res == FR_OK)
{
printf("SD卡已经成功挂载,可以进进行文件写入测试!\r\n");
}
}
else
{
printf("格式化失败! \r\n");
}
}
else if(res == FR_OK)
{
printf("挂载成功! \r\n");
}
else
{
printf("挂载失败! \r\n");
}
res = f_open(&file,SD_FileName,FA_OPEN_ALWAYS |FA_WRITE);
if((res & FR_DENIED) == FR_DENIED)
{
printf("卡存储已满,写入失败!\r\n");
}
f_lseek(&file, f_size(&file));//确保写词写入不会覆盖之前的数据
if(res == FR_OK)
{
printf("打开成功/创建文件成功! \r\n");
res = f_write(&file,write_buff,bufSize,&Bw); //写数据到SD卡
if(res == FR_OK)
{
printf("文件写入成功! \r\n");
}
else
{
printf("文件写入失败! \r\n");
}
}
else
{
printf("打开文件失败!\r\n");
}
f_close(&file); //关闭文件
f_mount(NULL,"0:",1); //取消挂载
}
void Get_SDCard_Capacity(void)
{
FRESULT result;
FATFS FS;
FATFS *fs;
DWORD fre_clust,AvailableSize,UsedSize;
uint16_t TotalSpace;
uint8_t res;
res = SD_init(); //SD卡初始化
if(res == 1)
{
printf("SD卡初始化失败! \r\n");
}
else
{
printf("SD卡初始化成功! \r\n");
}
/* 挂载 */
res=f_mount(&FS,"0:",1); //挂载
if (res != FR_OK)
{
printf("FileSystem Mounted Failed (%d)\r\n", result);
}
res = f_getfree("0:", &fre_clust, &fs); /* 根目录 */
if ( res == FR_OK )
{
TotalSpace=(uint16_t)(((fs->n_fatent - 2) * fs->csize ) / 2 /1024);
AvailableSize=(uint16_t)((fre_clust * fs->csize) / 2 /1024);
UsedSize=TotalSpace-AvailableSize;
/* Print free space in unit of MB (assuming 512 bytes/sector) */
printf("\r\n%d MB total drive space.\r\n""%d MB available.\r\n""%d MB used.\r\n",TotalSpace, AvailableSize,UsedSize);
}
else
{
printf("Get SDCard Capacity Failed (%d)\r\n", result);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_FATFS_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart1,&aRxBuffer1,1); //enable uart
printf(" mian \r\n");
Get_SDCard_Capacity(); //得到使用内存并选择格式化
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
WritetoSD(WriteBuffer,sizeof(WriteBuffer));
HAL_Delay(500);
WriteBuffer[0] = WriteBuffer[0] +0;
WriteBuffer[1] = WriteBuffer[1] +1;
write_cnt ++;
while(write_cnt > 10)
{
printf(" while \r\n");
HAL_Delay(500);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : SD_CS_Pin */
GPIO_InitStruct.Pin = SD_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(SD_CS_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
编译构建后下载到STM32F103C8T6中,连接好电路后。设置波特率为115200,打开串口
注意:SD卡模块需要5V驱动,打开串口程序后需按下RESET重启
等待串口持续发送while
,说明文件写入已完成。通过电脑查看写入的文件HELLO.TXT
三、总结
通过本次实验实现了对SD卡的操作,尽管中间出现了问题,但是最终还是解决所有的问题。可能是杜邦线或者SD模块的问题,写入过程中信号比较微弱,所以可能需要多次实验。
四、参考资料
STM32的简单的SD卡读写(不带文件系统,SPI方式)_学习札记-优快云博客_stm32sd卡读写