stc51单片机串口接收多字节数据

stc51单片机串口接收多字节数据

简介

51单片机有2个定时器,一个做串口波特率,一个做数据截止帧延时检测,硬件平台测试使用的是stc8的单片机,但是可以往51移植

代码

#include "stc8.h"
unsigned char flag=0;   //定义标志位,用来判断接收了多少个字符
void UartInit(void)		//9600bps@24.000MHz
{
	SCON = 0x50;		//8位数据,可变波特率
	AUXR |= 0x40;		//定时器1时钟为Fosc,即1T
	AUXR &= 0xFE;		//串口1选择定时器1为波特率发生器
	TMOD &= 0x0F;		//设定定时器1为16位自动重装方式
	TL1 = 0x8F;		//设定定时初值
	TH1 = 0xFD;		//设定定时初值
	ET1 = 0;		//禁止定时器1中断
	TR1 = 1;		//启动定时器1
	ES = 1;         //打开串口中断
}

void time0init()   //定时器0初始化
{
	TMOD &= 0xF0;
	 TL0 = 0;                                 //65536-11.0592M/12/1000
    TH0 = 0;                   //定时器时间要大于串口接收一帧的时间,一般以1.5倍即可
    TR0 = 0;                                    //启动定时器
    ET0 = 1;                                    //使能定时器中断
    EA = 1;                 //打开中断
}

void main()
{
	
	time0init();
	UartInit();
    while (1);
}




void TM1_Isr() interrupt 1  //定时器0中断,触发中断就意味着串口没有接收数据,定时器0定时结束
{
	SBUF = flag;    //将接收到的数据长度通过串口返回
	while(!TI);     //判断是否发送完成
	TI = 0;         //清除串口发送标志位
	flag = 0;       //数据长度清零
	TR0 = 0;        //关闭定时器0
}

void ser() interrupt 4 //接收中断函数
{
		if(RI)               //判断串口接收标志位
		{
			flag++;         //数据长度自加
			RI=0;           //清除串口接收标志位
		}
		TR0 = 0;            //关闭定时器0
		TL0 = 0;            //定时器赋初值,调试后发现需要关闭定时器再赋值才能发挥作用             
		TH0 = 0;
		TR0 = 1;            //打开定时器
//串口每接收一次就会赋初值,重新打开定时器0,所以,是串口接收一个数据帧,定时器还没触发中断,就重新赋值,清零,串口接收完,
//不进行清零操作,定时器会到时间触发中断,在中断函数中完成处理,并关闭定时器,等待串口接收数据后打开定时器
}
串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus或者USB混淆)。大多数计算机包含两个基于RS232的串口串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS- 232口。同时,串口通信协议也可以用于获取远程采集设备的数据串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。 典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配: a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为 14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是 GPIB设备的通信。 b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语 “包”指任何通信的情况。 c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位位1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值