分布式锁的三种实现方式

分布式锁三种实现方式:

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。有的时候,我们需要保证一个方法在同一时间内只能被同一个线程执行。

  • 基于数据库实现分布式锁; 

  • 基于缓存(Redis等)实现分布式锁; 

  • 基于Zookeeper实现分布式锁;

一, 基于数据库实现分布式锁

1. 悲观锁

利用select … where … for update 排他锁

注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。

2. 乐观锁

所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才能觉察到。我们的抢购、秒杀就是用了这种实现以防止超卖。
通过增加递增的版本号字段实现乐观锁

二, 基于缓存(Redis等)实现分布式锁

1. 使用命令介绍:


(1)SETNX
SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
(2)expire
expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
(3)delete
delete key:删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

2. 实现思想:


(1)获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
(2)获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。


SET resource_name my_random_value NX PX 30000

try{
  lock = redisTemplate.opsForValue().setIfAbsent(lockKey, LOCK);
  logger.info("cancelCouponCode是否获取到锁:"+lock);
  if (lock) {
    // TODO
    redisTemplate.expire(lockKey,1, TimeUnit.MINUTES); //成功设置过期时间
    return res;
  }else {
    logger.info("cancelCouponCode没有获取到锁,不执行任务!");
  }
}finally{
  if(lock){  
    redisTemplate.delete(lockKey);
    logger.info("cancelCouponCode任务结束,释放锁!");    
  }else{
    logger.info("cancelCouponCode没有获取到锁,无需释放锁!");
  }
}

三, 基于Zookeeper实现分布式锁

图片

Zookeeper的数据存储结构就像一棵树,这棵树由节点组成,这种节点叫做Znode。

Znode分为四种类型:

1.持久节点 (PERSISTENT)

默认的节点类型。创建节点的客户端与zookeeper断开连接后,该节点依旧存在 。

2.持久节点顺序节点(PERSISTENT_SEQUENTIAL)

所谓顺序节点,就是在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号:

 

3.临时节点(EPHEMERAL)

和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除:

4.临时顺序节点(EPHEMERAL_SEQUENTIAL)

顾名思义,临时顺序节点结合和临时节点和顺序节点的特点:在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号;当创建节点的客户端与zookeeper断开连接后,临时节点会被删除。

 

Zookeeper分布式锁的原理

Zookeeper分布式锁恰恰应用了临时顺序节点

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

(1)创建一个目录mylock;
(2)线程A想获取锁就在mylock目录下创建临时顺序节点;
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

四,对比

数据库分布式锁实现
缺点:

1.db操作性能较差,并且有锁表的风险
2.非阻塞操作失败后,需要轮询,占用cpu资源;
3.长时间不commit或者长时间轮询,可能会占用较多连接资源

Redis(缓存)分布式锁实现
缺点:

1.锁删除失败 过期时间不好控制
2.非阻塞,操作失败后,需要轮询,占用cpu资源;

ZK分布式锁实现
缺点:性能不如redis实现,主要原因是写操作(获取锁释放锁)都需要在Leader上执行,然后同步到follower。

总之:ZooKeeper有较好的性能和可靠性。

从理解的难易程度角度(从低到高)数据库 > 缓存 > Zookeeper

从实现的复杂性角度(从低到高)Zookeeper >= 缓存 > 数据库

从性能角度(从高到低)缓存 > Zookeeper >= 数据库

从可靠性角度(从高到低)Zookeeper > 缓存 > 数据库
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值