有用的文章参考:
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/tiancity-NJU/da-faster-rcnn-PyTorch
https://github.com/divyam02/dafrcnn-pytorch
https://blog.youkuaiyun.com/xinyu_cheng/article/details/89321655
https://github.com/naoto0804/cross-domain-detection
https://github.com/VisionLearningGroup/DA_Detection
https://www.cnblogs.com/wzyuan/p/11105758.html
https://www.commonlounge.com/discussion/da0c2181dbd34c4aa7776f0a351408b8
https://zhuanlan.zhihu.com/p/57737230
#########################################################################
在服务器上新建立用户,然后安装anaconda
bash Anaconda3-5.2.0-Linux-x86_64.sh
conda create -n tch04 python=3.6
conda activate tch04
conda install pytorch=0.4.0 cuda90 -c pytorch
conda install torchvision=0.2.1
conda install cudatoolkit=9.0
conda update -n base -c defaults conda
conda update numpy
pip install numpy==1.17.0
pip install --upgrade numpy
conda install scipy=1.2.1
========================================================================
查看驱动
nvidia-smi
安装cuda9.0
sudo sh cuda_9.0.176_384.81_linux.run --no-opengl-libs
Do you accept the previously read EULA?
2 accept/decline/quit: accept
3 Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
4 (y)es/(n)o/(q)uit: n
5 Install the CUDA 9.0 Toolkit?
6 (y)es/(n)o/(q)uit: y
7 Enter Toolkit Location
8 [ default is /usr/local/cuda-9.0 ]:
9 Do you want to install a symbolic link at /usr/local/cuda?
10 (y)es/(n)o/(q)uit: y
11 Install the CUDA 9.0 Samples?
12 (y)es/(n)o/(q)uit: y
13 Enter CUDA Samples Location
14 [ default is /home/pertor ]:
15 Installing the CUDA Toolkit in /usr/local/cuda-9.0 ...
16 Missing recommended library: libXmu.so
sudo vim ~/.bashrc
“i”
export PATH=/usr/local/cuda-9.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH
“esc” “:wq:”
source ~/.bashrc
检查是否安装成功
cd /usr/l