The game of Crosses and Crosses is played on the field of 1 × n cells. Two players make moves in turn. Each move the player selects any free cell on the field and puts a cross ‘×’ to it. If after the player’s move there are three crosses in a row, he wins.
You are given n. Find out who wins if both players play optimally.
Input file contains one integer number n (3 ≤ n ≤ 2000).
Output ‘1’ if the first player wins, or ‘2’ if the second player does.
#1 | 3 |
---|---|
#2 | 6 |
Sample Output
#1 | 1 |
---|---|
#2 | 2 |
这题需要好好叙述!!
题意:给你一个1*n长度的格子,两人轮流在格子上画"×",谁先画到“×××”谁赢,先手赢输出“1“ , 后手赢输出”2“。
第一种方法:用记忆化搜索来写。赢得的前一个状态是 ×0× ××0 0××
因此不论先手放在哪个格子,它的前后两个格子后手都不会画上去。
这样就可以把N分成i-3和n-i-2两部分,再将其异或一下
下面贴上代码:
#include <stdio.h>
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 2005;
int sg[maxn];
int getsg(int n)
{
if(n < 0)
{
return 0;
}
if(sg[n] >= 0)
{
return sg[n];
}
int Hash[maxn];
memset(Hash,0,sizeof(Hash));
for(int i = 1 ; i <= n ; i++)
{
Hash[getsg(i-3) ^ getsg(n-i-2)] = 1;
}
for(int j = 0 ;;j++)
{
if(Hash[j] == 0)
{
return sg[n] = j;
}
}
}
int main()
{
int n;
memset(sg,-1,sizeof(sg));
while(scanf("%d" , &n) !=EOF)
{
if(getsg(n))
{
printf("1\n");
}
else
{
printf("2\n");
}
}
return 0;
}
第二种,先手推前面的初始值再打表,可以通过它推出规律,不过本题数据范围较小,可以直接打表。
sg[0]=0,sg[1]=1(mex(sg[-2]^sg[-2] ));sg[2]=1(mex(sg[-1]^sg[-1] ));sg[3]=1(mex(sg[0]^sg[0] ));
sg[4] = 2(mex(sg[0]^sg[1] , sg[0]^sg[0] ))同理sg[5] = 2;
打表代码:
void init()
{
memset(sg,0,sizeof(sg));
sg[0] = 0;
sg[1] = 1;
sg[2] = 1;
sg[3] = 1;
sg[4] = 2;
sg[5] = 2;
for(int i = 6 ; i < maxn ;i++)
{
memset(vis,0,sizeof(vis));
for(int j = 3;j <= i;j++)
{
vis[sg[j-3]^sg[i-j-2]] = 1;
}
for(int j = 0 ;;j++)
{
if(vis[j]==0)
{
sg[i] = j;
break;
}
}
}
// for(int i = 0 ; i<maxn ; i++)
// {
// cout<<"i:"<<i<<" sg[i]"<<sg[i]<<endl;
// printf("SG[%d] = %d\n",i,sg[i]);
// }
}
这里有个超级莫名其妙的坑,单组输入才能过
int main()
{
init();
//函数打印规律
int n;
cin>>n;
{
if(sg[n] == 0)
printf("2\n");
else
printf("1\n");
}
return 0;
}
另一种打表代码,找规律
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
const int maxn = 2005;
int sg[maxn];
int vis[maxn];
//先利用sg函数找到规律
void init()
{
memset(sg,0,sizeof(sg));
//初始状态
sg[0] = 0;
sg[1] = 1;
sg[2] = 1;
for(int i = 2 ; i < maxn ;i++)
{
memset(vis,0,sizeof(vis));
//对于所有i状态,如果他的i-3/i-4/i-5状态是必败的话,那状态i就是必胜状态
vis[sg[i-3]] = 1;
vis[sg[i-4]] = 1;
vis[sg[i-5]] = 1;
for(int j = 0;j<= i-5;j++)
{
vis[sg[j]^sg[i-j-5]] = 1;
//对于每一种sg值都遍历一遍
}
for(int j = 0 ;;j++)
{
if(!vis[j])//找出后继状态中mex(sg[x]);
{
sg[i] =j;
break;
}
}
// if(sg[i]==0)
// cout<<"i:"<<i<<" sg[i]"<<sg[i]<<endl;
}
// for(int i = 0 ; i<maxn ; i++)
// {
// printf("SG[%d] = %d\n",i,sg[i]);
// }
}
int main()
{
// freopen("d://duipai//data.txt","r",stdin);
// freopen("d://duipai//out1.txt","w",stdout);
init();
//函数打印规律
// int k;
int n;
while(cin>>n)
{
if(sg[n]==0)
cout<<"2"<<endl;
else
cout<<"1"<<endl;
}
return 0;
}