Perfect Permutation

本文介绍了一个简单的算法,用于生成特定类型的排列——完美排列。对于给定的整数n,如果存在一个长度为n的排列,使得对每个1到n的整数i都满足ppi = i且pi ≠ i,则该排列被视为完美排列。文章提供了判断并输出完美排列的C++代码实现。

A permutation is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Let's denote the i-th element of permutation p as pi. We'll call number n the size of permutation p1, p2, ..., pn.

Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation p that for any i (1 ≤ i ≤ n) (nis the permutation size) the following equations hold ppi = i and pi ≠ i. Nickolas asks you to print any perfect permutation of size n for the given n.

Input

A single line contains a single integer n (1 ≤ n ≤ 100) — the permutation size.

Output

If a perfect permutation of size n doesn't exist, print a single integer -1. Otherwise print ndistinct integers from 1 to np1, p2, ..., pn — permutation p, that is perfect. Separate printed numbers by whitespaces.

Examples

Input

1

Output

-1

Input

2

Output

2 1 

Input

4

Output

2 1 4 3 

AC代码(水题)

 

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n, a[120];
    int i;
    while(scanf("%d",&n)!=EOF)
    {
        if(n%2!=0)
            printf("-1\n");
        else
        {
            for(i = 1;i<=n;i++)
            {
                if(i%2==0)
                   printf("%d%c",i-1,i==n?'\n':' ');
                else
                    printf("%d ",i+1);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值