朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。其中情感分析和垃圾邮件识别都是通过文本来进行判断。这三个场景本质上都是文本分类,这也是朴素贝叶斯最擅长的地方。所以朴素贝叶斯也常用于自然语言处理 NLP 的工具。
sklearn 机器学习包
sklearn 的全称叫 Scikit-learn,它给我们提供了 3 个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。
这三种算法适合应用在不同的场景下,我们应该根据特征变量的不同选择不同的算法:
高斯朴素贝叶斯:特征变量是连续变量,符合高斯分布,比如说人的身高,物体的长度。
多项式朴素贝叶斯:特征变量是离散变量,符合多项分布,在文档分类中特征变量体现在一个单词出现的次数,或者是单词的 TF-IDF 值等。
伯努利朴素贝叶斯:特征变量是布尔变量,符合 0/1 分布,在文档分类中特征是单词是否出现。
伯努利朴素贝叶斯是以文件为粒度,如果该单词在某文件中出现了即为 1,否则为 0。而多项式朴素贝叶斯是以单词为粒度,会计算在某个文件中的具体次数。而高斯朴素贝叶斯适合处理特征变量是连续变量,且符合正态分布(高斯分布)的情况。比如身高、体重这种自然界的现象就比较适合用高斯朴素贝叶斯来处理。而文本分类是使用多项式朴素贝叶斯或者伯努利朴素贝叶斯。
什么是 TF-IDF 值呢?
TF-IDF 是一个统计方法,用来评估某个词语对于一个文件集或文档库中的其中一份文件的重要程度。
TF-IDF 实际上是两个词组 Term Frequency 和 Inverse Document Frequency 的总称,两者缩写为 TF 和 IDF,分别代表了词频和逆向文档频率。
词频 TF 计算了一个单词在文档中出现的次数,它认为一个单词的重要性和它在文档中出现的次数呈正比。
逆向文档频率 IDF,是指一个单词在文档中的区分度。它认为一个单词出现在文档数越少,就越能通过这个单词把该文档和其他文档区分开。IDF 越大就代表该单词的区分度越大。
所以 TF-IDF 实际上是词频 TF 和逆向文档频率 IDF 的乘积。这样我们倾向于找到 TF 和 IDF 取值都高的单词作为区分,即这个单词在一个文档中出现的次数多,同时又很少出现在其他文档中。这样的单词适合用于分类。
TF-IDF 如何计算
首先看下词频 TF 和逆向文档概率 IDF 的公式。
为什么 IDF 的分母中,单词出现的文档数要加 1 呢?因为有些单词可能不会存在文档中,为了避免分母为 0,统一给单词出现的文档数都加 1。
TF-IDF=TF*IDF。
TF-IDF 值就是 TF 与 IDF 的乘积, 这样可以更准确地对文档进行分类。比如“我”这样的高频单词,虽然 TF 词频高,但是 IDF 值很低,整体的 TF-IDF 也不高。
假设一个文件夹里一共有 10 篇文档,其中一篇文档有 1000 个单词,“this”这个单词出现 20 次,“bayes”出现了 5 次。“this”在所有文档中均出现过,而“bayes”只在 2 篇文档中出现过。我们来计算一下这两个词语的 TF-IDF 值。
针对“this”,计算 TF-IDF 值:
所以 TF-IDF=0.02*(-0.0414)=-8.28e-4。
针对“bayes”,计算 TF-IDF 值:
TF-IDF=0.005*0.5229=2.61e-3。
很明显“bayes”的 TF-IDF 值要大于“this”的 TF-IDF 值。这就说明用“bayes”这个单词做区分比单词“this”要好。
如何求 TF-IDF