题解:
初看这道题第一反应是DFS,然后就用DFS写了出来,发现m,n为10左右的时候时间就已经爆了。
然后我利用这个程序打了一张表,就发现了规律,除了m=2或n=2时,其余情况等于(m,n-1)的情况加上(m-1,n)的情况
事实上这是一道动态规划,因为当走到(m,n-1)或是(m-1,n)的时候,再走一步就能到达终点,那么总走法就等于这两种走法的总和
数据规模也是很大的,需要写高精度,但考试的时候写的高精度有些问题并且没有压位,就用double写了只拿了30分
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<climits>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#include<cctype>
#include<map>
#include<set>
#define MAXA 900
using namespace std;
struct BigInteger {
static const int BASE = 1000000000;
static const int WIDTH = 9;
vector<int> s;
BigInteger(long long num = 0) {
*this = num;
}
BigInteger operator = (long long num) {
s.clear();
do {
s.push_back(num % BASE);
num /= BASE;
} while(num > 0);
return *this;
}
BigInteger operator = (const string& str) {
s.clear();
int x, len = (str.length() - 1) / WIDTH + 1;
for(int i = 0; i < len; i++) {
int end = str.length() - i*WIDTH;
int start = max(0, end - WIDTH);
sscanf(str.substr(start, end-start).c_str(), "%d", &x);
s.push_back(x);
}
return *this;
}
BigInteger operator + (const BigInteger& b) const {
BigInteger c;
c.s.clear();
for(int i = 0, g = 0; ; i++) {
if(g == 0 && i >= s.size() && i >= b.s.size()) break;
int x = g;
if(i < s.size()) x += s[i];
if(i < b.s.size()) x += b.s[i];
c.s.push_back(x % BASE);
g = x / BASE;
}
return c;
}
};
ostream& operator << (ostream &out, const BigInteger& x) {
out << x.s.back();
for(int i = x.s.size()-2; i >= 0; i--) {
char buf[20];
sprintf(buf, "%08d", x.s[i]);
for(int j = 0; j < strlen(buf); j++) out << buf[j];
}
return out;
}
istream& operator >> (istream &in, BigInteger& x) {
string s;
if(!(in >> s)) return in;
x = s;
return in;
}
BigInteger sline[MAXA][MAXA];
int m,n;
int main()
{
scanf("%d %d",&m,&n);
for(int i=2;i<=m;i++)
sline[i][2] = i;
for(int i=2;i<=n;i++)
sline[2][i] = i;
for(int i=3;i<=m;i++)
for(int j=3;j<=n;j++)
sline[i][j] = sline[i][j-1] + sline[i-1][j];
cout << sline[m][n];
}