1147 Heaps(30 分)
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:
3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56
Sample Output:
Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10
思路:完全二叉的树的最大堆和最小堆的 不需要重新维护堆 只需判断 后序遍历递归输出
完全二叉树的性质:最后一个非叶子结点是第n/2个结点 (堆顶以1开始)
#include <iostream>
#include <vector>
using namespace std;
int n,h[1001];
vector <int>v;
void postorder(int i)
{
if (i <= n)
{
postorder(i * 2);
postorder(i * 2+1);
v.push_back(h[i]);
}
}
int max_h()
{
int i;
for (i = n / 2; i >= 1; i--)
{
int t;
if (h[i * 2] > h[i])t = i * 2;
else t = i;
if (i * 2 + 1 == n)
{
if (h[i * 2 + 1] > h[t])t = i * 2 + 1;
}
if (t != i)return 0;
}
return 1;
}
int min_h()
{
int i;
for (i = n / 2; i >= 1; i--)
{
int t;
if (h[i * 2] < h[i])t = i * 2;
else t = i;
if (i * 2 + 1 == n)
{
if (h[i * 2 + 1] < h[t])t = i * 2 + 1;
}
if (t != i)return 0;
}
return 1;
}
int main()
{
int i,m;
cin >>m>> n;
for (int j = 0; j < m; j++)
{
int flag = 1;
for (i = 1; i <= n; i++)
{
scanf("%d", &h[i]);
}
if (max_h())cout << "Max Heap" << endl;
else if(min_h())cout << "Min Heap" << endl;
else cout << "Not Heap" << endl;
postorder(1);
for (i = 0; i < v.size(); i++)
{
if (i == 0)printf("%d", v[i]);
else printf(" %d", v[i]);
}
printf("\n");
v.clear();
}
}