注意版本,这个是1.0d的版本。
# write in tfrecord
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("tfrecords_dir", "./tfrecords/captcha.tfrecords", "验证码tfrecords文件")
tf.app.flags.DEFINE_string("captcha_dir", "../data/Genpics/", "验证码图片路径")
tf.app.flags.DEFINE_string("letter", "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "验证码字符的种类")
def dealwithlabel(label_str):
# 构建字符索引 {0:'A', 1:'B'......}
num_letter = dict(enumerate(list(FLAGS.letter)))
# 键值对反转 {'A':0, 'B':1......}
letter_num = dict(zip(num_letter.values(), num_letter.keys()))
print(letter_num)
# 构建标签的列表
array = []
# 给标签数据进行处理[[b"NZPP"]......]
for string in label_str:
letter_list = []# [1,2,3,4]
# 修改编码,bytes --> string
for letter in string.decode('utf-8'):
letter_list.append(letter_num[letter])
array.append(letter_list)
# [[13, 25, 15, 15], [22, 10, 7, 10], [22, 15, 18, 9], [16, 6, 13, 10], [1, 0, 8, 17], [0, 9, 24, 14].....]
print(array)
# 将array转换成tensor类型
label = tf.constant(array)
return label
def get_captcha_image():
"""
获取验证码图片数据
:param file_list: 路径+文件名列表
:return: image
"""
# 构造文件名
filename = []
for i in range(6000):
string = str(i) + ".jpg"
filename.append(string)
# 构造路径+文件
file_list = [os.path.join(FLAGS.captcha_dir, file) for file in filename]
# 构造文件队列
file_queue = tf.train.string_input_producer(file_list, shuffle=False)
# 构造阅读器
reader = tf.WholeFileReader()
# 读取图片数据内容
key, value = reader.read(file_queue)
# 解码图片数据
image = tf.image.decode_jpeg(value)
image.set_shape([20, 80, 3])
# 批处理数据 [6000, 20, 80, 3]
image_batch = tf.train.batch([image], batch_size=6000, num_threads=1, capacity=6000)
return image_batch
def get_captcha_label():
"""
读取验证码图片标签数据
:return: label
"""
file_queue = tf.train.string_input_producer(["../data/Genpics/labels.csv"], shuffle=False)
reader = tf.TextLineReader()
key, value = reader.read(file_queue)
records = [[1], ["None"]]
number, label = tf.decode_csv(value, record_defaults=records)
# [["NZPP"], ["WKHK"], ["ASDY"]]
label_batch = tf.train.batch([label], batch_size=6000, num_threads=1, capacity=6000)
return label_batch
def write_to_tfrecords(image_batch, label_batch):
"""
将图片内容和标签写入到tfrecords文件当中
:param image_batch: 特征值
:param label_batch: 标签纸
:return: None
"""
# 转换类型
label_batch = tf.cast(label_batch, tf.uint8)
print(label_batch)
# 建立TFRecords 存储器
writer = tf.python_io.TFRecordWriter(FLAGS.tfrecords_dir)
# 循环将每一个图片上的数据构造example协议块,序列化后写入
for i in range(6000):
# 取出第i个图片数据,转换相应类型,图片的特征值要转换成字符串形式
image_string = image_batch[i].eval().tostring()
# 标签值,转换成整型
label_string = label_batch[i].eval().tostring()
# 构造协议块
example = tf.train.Example(features=tf.train.Features(feature={
"image": tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_string])),
"label": tf.train.Feature(bytes_list=tf.train.BytesList(value=[label_string]))
}))
writer.write(example.SerializeToString())
# 关闭文件
writer.close()
return None
if __name__ == "__main__":
# 获取验证码文件当中的图片
image_batch = get_captcha_image()
# 获取验证码文件当中的标签数据
label = get_captcha_label()
print(image_batch, label)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# 获取tensor里面的值
label_str = sess.run(label)
print(label_str)
# 处理字符串标签到数字张量
label_batch = dealwithlabel(label_str)
print(label_batch)
# 将图片数据和内容写入到tfrecords文件当中
write_to_tfrecords(image_batch, label_batch)
coord.request_stop()
coord.join(threads)