1101: [POI2007]Zap
原式为 ∑ i = 1 A ∑ j = 1 B [ ( i , j ) = = D ] \large \sum_{i=1}^{A} \sum_{j=1}^{B} [(i,j)==D] ∑i=1A∑j=1B[(i,j)==D]
基本操作,除掉D
∑ i = 1 A D ∑ j = 1 B D [ ( i , j ) = = 1 ] \large \sum_{i=1}^{\frac{A}{D}} \sum_{j=1}^{\frac{B}{D}} [(i,j)==1] ∑i=1DA∑j=1DB[(i,j)==1]
已知 ∑ d ∣ n μ ( d ) = [ n = = 1 ] \large \sum_{d|n} \mu(d)=[n==1] ∑d∣nμ(d)=[n==1]
所以 ∑ i = 1 A D ∑ j = 1 B D ∑ d ∣ ( i , j ) μ ( d ) \large \sum_{i=1}^{\frac{A}{D}} \sum_{j=1}^{\frac{B}{D}} \sum_{d|(i,j)} \mu(d) ∑i=1DA∑j=1DB∑d∣(i,j)μ(d)
移项 ∑ d = 1 m i n ( A D , B D ) μ ( d ) ∑ d ∣ i ∑ d ∣ j 1 \large \sum_{d=1}^{min(\frac{A}{D},\frac{B}{D})} \mu(d) \sum_{d|i} \sum_{d|j} 1 ∑d=1min(DA,DB)μ(d)∑d∣i∑d∣j1
等于 ∑ d = 1 m i n ( A D , B D ) μ ( d ) [ A D i ] [ B D j ] \large \sum_{d=1}^{min(\frac{A}{D},\frac{B}{D})} \mu(d) [\frac{A}{Di}][\frac{B}{Dj}] ∑d=1min(DA,DB)μ(d)[DiA][DjB]
数论分块就可以了。
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=50005;
int T,A,B,D,cnt,p[MAXN],mu[MAXN];long long Ans;
bool vis[MAXN];
void make_p(){
vis[0]=vis[1]=1;mu[1]=1;
for(int i=2;i<=50000;i++){
if(!vis[i]) p[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*p[j]<=50000;j++){
int x=i*p[j];vis[x]=1;
if(i%p[j]==0){mu[x]=0;break;}
else mu[x]=-mu[i];
}
}
for(int i=2;i<=50000;i++) mu[i]+=mu[i-1];
}
int main(){
make_p();
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&A,&B,&D);Ans=0;A/=D,B/=D;
for(int i=1,fi;i<=min(A,B);i=fi+1){
fi=min((A/(A/i)),B/(B/i));fi=min(fi,min(A,B));
Ans+=1ll*(mu[fi]-mu[i-1])*(A/i)*(B/i);
}
printf("%lld\n",Ans);
}
return 0;
}