POJ 1458 Common Subsequence(最长公共子序列LCS)

本文详细解析了最长公共子序列问题,介绍了如何使用动态规划方法解决该问题,并提供了具体的AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input


The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output


For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc         abfcab
programming    contest 
abcd           mnp
Sample Output
4
2
0

就是求最长公共子序列,题意没啥好讲的,子序列和最长子序列是啥就不说了。

用一个二维数组dp[i][j]来表示到a串第i-1个和b串第j-1个字符的最长子序列长度,如果a[i] b[i]相等,说明必定在最长子序列里,子序列长度++,如果不相等的话说明最长子序列长度在这个状态不变,从前面两个邻近状态挑大的那个。

dp问题要从邻近的两个值里挑最大的,这就是dp的意义嘛,找出邻近问题的最优解。

AC代码:

#include <iostream>
#include <string>
#include <cstring>
using namespace std;
int dp[1010][1010];
int main()
{
    string a,b;

    while(cin>>a>>b)
    {
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=a.size();i++)
        {
            for(int j=1;j<=b.size();j++)
            {
                if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        cout<<dp[a.size()][b.size()]<<endl;
    }
    return 0;
}

还有个问题,就是如何按照字典序输出最长子序列,这个就留待以后解决了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值