ECCV2018超分辨率MSRN:Multi-scale Residual Network for Image Super-Resolution

这篇文章主要创新点是:使用多尺度残差块充分提取图片特征

问题

(1)目前的研究倾向于使用更深层次的卷积神经网络来提高性能。但是随着网络深度的增加,训练过程中出现的问题越来越多,需要更多的训练技巧。导致很多方法难以复现;
(2)特征利用不足,随着网络深度的增加,特征在传输过程中逐渐消失。如何充分利用这些特征,是网络重建高质量图像的关键;
(3)可扩展性差;

贡献

提出了一种新的多尺度残差网络(MSRN)来充分利用图像的特征:
(1)使用MSRB来获取不同尺度的图像特征(局部多尺度特征)。
(2)将每个MSRB的输出组合起来进行全局特征融合(HFFS,一个以1×1卷积核为瓶颈层)。
将局部多尺度特征与全局特征相结合,最大限度地利用LR图像特征,彻底解决特征在传输过程中消失的问题。
还设计了一个简单而高效重建结构可以很容易地实现多尺度的放大。

网络架构

在这里插入图片描述网络分为(1)特征提取部分;(2)重建部分
特征提取部分又分为:(1)多尺度残差块(MSRB);(2)层次特征融合结构(HFFS)
损失函数采用L1损失。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值