import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
sns.set(color_codes = True)
np.random.seed(sum(map(ord,"distributions")))
tips = sns.load_dataset("tips")
titanic = sns.load_dataset("titanic")
sns.stripplot(x = "day", y = "total_bill",data = tips,jitter=True)
<matplotlib.axes._subplots.AxesSubplot at 0x2cec641e780>

sns.swarmplot(x = "day", y = "total_bill",data = tips,hue = "sex")
<matplotlib.axes._subplots.AxesSubplot at 0x2cec7867c50>

sns.boxplot(x = "day",y = "total_bill" , hue = "time", data = tips)
<matplotlib.axes._subplots.AxesSubplot at 0x2cec78c9dd8>

sns.barplot(x = "sex",y = "survived",hue = "class",data = titanic)
<matplotlib.axes._subplots.AxesSubplot at 0x2cec79917f0>

sns.pointplot(x = "sex",y = "survived",hue = "class",data = titanic)
<matplotlib.axes._subplots.AxesSubplot at 0x2cec79f4b00>

sns.factorplot(x = "day",y = "total_bill", hue = "smoker",data = tips)
<seaborn.axisgrid.FacetGrid at 0x2cec7aa9b00>

sns.factorplot(x = "day",y = "total_bill", hue = "smoker",
col = "time",data = tips,kind = "swarm")
<seaborn.axisgrid.FacetGrid at 0x2cec7984cc0>

seaborn.factorplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind=‘point’, size=4, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)
Parameters:
- x,y,hue 数据集变量 变量名
- date 数据集 数据集名
- row,col 更多分类变量进行平铺显示 变量名
- col_wrap 每行的最高平铺数 整数
- estimator 在每个分类中进行矢量到标量的映射 矢量
- ci 置信区间 浮点数或None
- n_boot 计算置信区间时使用的引导迭代次数 整数
- units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据
- order, hue_order 对应排序列表 字符串列表
- row_order, col_order 对应排序列表 字符串列表
+kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 “v”/“h” color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False