Feature fusion methods in remote sensing

本文介绍了几种特征融合方法,包括后期精炼、直接特征融合和分类后比较。直接特征融合中,重点讨论了自组织映射(SOM)和最小噪声分数(MNF)两种方法,它们分别通过考虑邻居集群的影响和改进PCA方法来提高特征融合的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Today, I learned some feature fusion methods as follows (refer to the literature of qinrongjun 3D CD reviews):

1. Post-refinement

2. Direct feature fusion: considering all channels of information simultaneously

3. Post-classification comparison: first, conducting objects extration or classification by changeing the spectral values or feature values into label images. Then, compare labels.

 

The considering part is part 2.

1) SOM: self-organizing map (a kind of clustering methods like k-means)  it considers not only its own cluster, but also has an influence on neighbouring clusters. ( code: refer to MATLAB)

2) MNF: minimum noise fraction which improves PCA methods by replacing the variance-based order with noise-based one, with an increase of noise robustness.

 

date: 20190225

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值