召回率R,精确率P,精度accuracy,F1计算
一、召回率R,精确率P,精度accuracy,F1定义
二、使用步骤
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
#1表示白球,0表示黑球
y_true = [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
y_pred = [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
print("acc:", accuracy_score(y_true, y_pred))
print("p:", precision_score(y_true, y_pred))
print("r:", recall_score(y_true, y_pred))
print("f1:", f1_score(y_true, y_pred))
打印输出
例如,图中白球为1,黑球为0
TP = 4,实际的白球,被预测为白球,编号1,2,7,10
FP = 2,实际的黑球,被预测为白球,编号4,5
FN = 1,实际的白球,被预测为黑球,编号3
TN = 3,实际的黑球,被预测为黑球,编号6,8,9
所以
Precision = 4/(4+2) = 2/3 = 0.66667
Recall = 4/(4+1) = 0.8
acc = (4+3)/10 = 0.7
参考
1.https://blog.youkuaiyun.com/lhxez6868/article/details/108150777