动态规划算法的原理和实现(Java)

动态规划算法介绍

动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法

  • 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
  • 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 (即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
  • 动态规划可以通过填表的方式来逐步推进,得到最优解.

动态规划算法最佳实践-背包问题

背包问题:有一个背包,容量为4磅 , 现有如下物品
在这里插入图片描述
1)、要求达到的目标为装入的背包的总价值最大,并且重量不超出
2)、要求装入的物品不能重复

思路分析和图解:

  • 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)
  • 这里的问题属于01背包,即每个物品最多放一个。而无限背包可以转化为01背包。
    (1)v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是0
    (2) 当w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略
    (3) 当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]}
    // 当 准备加入的新增的商品的容量小于等于当前背包的容量,
    // 装入的方式:
    v[i-1][j]: 就是上一个单元格的装入的最大值
    v[i] : 表示当前商品的价值
    v[i-1][j-w[i]] : 装入i-1商品,到剩余空间j-w[i]的最大值
    当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} :
    详细图解如下:
    在这里插入图片描述

详细代码:

package dynamic;

public class BagProblem {
	public static void main(String[] args) {
		int[] weight = { 1, 4, 3 };
		int[] val = { 1500, 3000, 2000 };
		int m = 4;// 背包大小
		int n = val.length;// 物品个数
		int[][] v = new int[n + 1][m + 1];
		int[][] path = new int[n + 1][m + 1];
		for (int j = 0; j < m + 1; j++) {
			v[0][j] = 0;
		}
		for (int i = 0; i < n + 1; i++) {
			v[i][0] = 0;
		}
		for (int i = 1; i < n + 1; i++) {
			for (int j = 1; j < m + 1; j++) {
				//因为i是从1开始的,故在weight和value中要-1
				if(j<weight[i-1]) {
					//将上一行v[i-1][j]的值赋给第i行
					v[i][j]=v[i-1][j];
				}
				// v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} 
				else if(j>=weight[i-1]) {
					if(v[i-1][j]>val[i-1]+v[i-1][j-weight[i-1]])
						v[i][j] = v[i-1][j];
					else {
						v[i][j] =val[i-1]+v[i-1][j-weight[i-1]];
						path[i][j]=1;
					}
				}
			}
		}
		// 打印出二维数组
		for (int i = 0; i < n + 1; i++) {
			for (int j = 0; j < m + 1; j++) {
				System.out.print(v[i][j] + " ");
			}
			System.out.println();
		}
		//从后往前遍历
		int i = path.length-1;
		int j = path[0].length-1;
		while(i>0&&j>0) {
			if(path[i][j]==1) {
				System.out.printf("将第%d个物品放入背包\n",i);
				//计算背包剩余的重量
				j-=weight[i-1];
			}
			i--;
		}
	}
	
}

安装Docker安装插件,可以按照以下步骤进行操作: 1. 首先,安装Docker。可以按照官方文档提供的步骤进行安装,或者使用适合您操作系统的包管理器进行安装。 2. 安装Docker Compose插件。可以使用以下方法安装: 2.1 下载指定版本的docker-compose文件: curl -L https://github.com/docker/compose/releases/download/1.21.2/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose 2.2 赋予docker-compose文件执行权限: chmod +x /usr/local/bin/docker-compose 2.3 验证安装是否成功: docker-compose --version 3. 在安装插件之前,可以测试端口是否已被占用,以避免编排过程中出错。可以使用以下命令安装netstat并查看端口号是否被占用: yum -y install net-tools netstat -npl | grep 3306 现在,您已经安装Docker安装Docker Compose插件,可以继续进行其他操作,例如上传docker-compose.yml文件到服务器,并在服务器上安装MySQL容器。可以参考Docker的官方文档或其他资源来了解如何使用DockerDocker Compose进行容器的安装和配置。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Docker安装docker-compose插件](https://blog.youkuaiyun.com/qq_50661854/article/details/124453329)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Docker安装MySQL docker安装mysql 完整详细教程](https://blog.youkuaiyun.com/qq_40739917/article/details/130891879)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值