leedcode 175 组合两张表

本文详细介绍了SQL中的左连接(LEFT JOIN)操作,解释了左连接如何确保左表的所有记录都被包含在结果集中,并且展示了左连接与其他类型连接的区别。

这里写图片描述
要提供person的以下信息:
FirstName, LastName, City, State

解答

select p.FristName,p.LastName,a.City,a.State from Person p left join Address a on p.PeisonId=a.PersonId;

select * from A left join B on A.id=B.id
left join 是以A表的记录为基础的,A可以看成左表,B可以看成右表,left join是以左表为准的.
换句话说,左表(A)的记录将会全部表示出来,而右表(B)只会显示符合搜索条件的记录(例子中为: A.aID = B.bID).
B表记录不足的地方均为NULL.

使用 连接查询,连接查询分为内链接和外连接
内连接( join )会舍弃2个表不匹配的数据
外连接( left join | right join )除了显示符合条件的记录外,还显示表中的记录,查不到的用null表示

https://blog.youkuaiyun.com/qq_35516165/article/details/80481738 较好的解题链接。

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值