ResNet_Pytorch记录

这是一个基于PyTorch实现的ResNet网络结构,包括BasicBlock、PreActBlock、Bottleneck和PreActBottleneck模块。代码中定义了不同深度的ResNet模型,如ResNet18、ResNet34等。这些模型用于图像识别任务,通过残差学习促进深度网络的训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入在这里插入代码片代码片@TOC

# Code modified from https://github.com/kuangliu/pytorch-cifar

'''ResNet in PyTorch.

BasicBlock and Bottleneck module is from the original ResNet paper:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

PreActBlock and PreActBottleneck module is from the later paper:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv:1603.05027
'''
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.autograd import Variable


def conv3x3(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(in_planes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class PreActBlock(nn.Module):
    '''Pre-activation version of the BasicBlock.'''
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(PreActBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = conv3x3(in_planes, planes, stride)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False)
            )

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out)
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))
        out += shortcut
        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class PreActBottleneck(nn.Module):
    '''Pre-activation version of the original Bottleneck module.'''
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(PreActBottleneck, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False)
            )

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out)
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))
        out = self.conv3(F.relu(self.bn3(out)))
        out += shortcut
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10, nc=3):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = conv3x3(nc, 64)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x, lin=0, lout=5):
        out = x
        if lin < 1 and lout > -1:
            out = self.conv1(out)
            out = self.bn1(out)
            out = F.relu(out)
        if lin < 2 and lout > 0:
            out = self.layer1(out)
        if lin < 3 and lout > 1:
            out = self.layer2(out)
        if lin < 4 and lout > 2:
            out = self.layer3(out)
        if lin < 5 and lout > 3:
            out = self.layer4(out)
        if lout > 4:
            # out = F.avg_pool2d(out, 4)
            out = F.adaptive_avg_pool2d(out, (1, 1))

            out = out.view(out.size(0), -1)
            out = self.linear(out)
        return out


def ResNet18(num_classes=10, nc=3):
    return ResNet(PreActBlock, [2, 2, 2, 2], num_classes=num_classes, nc=nc)


def ResNet34(num_classes=10):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes)


def ResNet50(num_classes=10):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)


def ResNet101(num_classes=10):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)


def ResNet152(num_classes=10):
    return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes)


def test():
    net = ResNet18()
    y = net(Variable(torch.randn(1, 3, 32, 32)))
    print(y.size())


def resnet():
    return ResNet18()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值