PAT-ADVANCED1019——General Palindromic Number

本文深入解析PAT-ADVANCED中广义回文数问题,介绍如何判断一个十进制数在不同进制下是否为回文数。通过C++代码实现进制转换及回文判断,分享解题思路与技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我的PAT-ADVANCED代码仓:https://github.com/617076674/PAT-ADVANCED

原题链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805487143337984

题目描述:

题目翻译:

1019 广义回文数

向前或向后书写时相同的数字称为回文数字。例如,1234321是回文数字。所有单个数字都是回文数字。

虽然回文数通常在十进制中被考虑,但回文概念可以应用于任何数字系统中的自然数。考虑基数b >= 2中的数字N > 0,该数字k + 1个数字ai可以转换为10进制数(a0 * b ^ 0 + a1 * b ^ 1 + ... + ak * b ^k)。 通常,0 <= ai < b(i = 1, 2, ..., k)且ak非零。当且仅当ai = ak - i(i = 1, 2, ..., k)时,N是一个回文数。Zero在任何进制中都写为0,并且根据定义也是回文。

给定任何正十进制整数N和进制b,你需要判断N是否是b进制下的回文数。

输入格式:

每个输入文件包含一个测试用例。每个测试用例由两个正数N和b组成,其中0 < N <= 10代表十进制数,2 <= b <= 10代表进制。 数字用空格分隔。

输出格式:

对每个测试用例,如果N是基数b中的回文数,在一行中打印“Yes”,否则打印“No”。然后在下一行中,以“akak - 1...a0”的形式打印N转换为b进制数字的形式。请注意,输出结束时不得有额外的空格。

输入样例1:

27 2

输出样例1:

Yes
1 1 0 1 1

输入样例2:

121 5

输出样例2:

No
4 4 1

知识点:进制转换

思路:先进制转换,再判断是否是回文数

时间复杂度和空间复杂度均是O(n),其中n为进制转换后的位数。

C++代码:

#include<iostream>
#include<vector>

using namespace std;

bool isPalindromic(vector<int> result);

int main(){
	int N, b;
	scanf("%d %d", &N, &b);
	vector<int> result;
	while(N > 0){
		result.push_back(N % b);
		N /= b;
	}
	if(isPalindromic(result)){
		printf("Yes\n");
	}else{
		printf("No\n");
	}
	for(int i = result.size() - 1; i >= 0; i--){
		printf("%d", result[i]);
		if(i != 0){
			printf(" ");
		}else{
			printf("\n");
		}
	}
	return 0;
}

bool isPalindromic(vector<int> result){
	for(int i = 0; i < result.size() / 2; i++){
		if(result[i] != result[result.size() - 1 - i]){
			return false;
		}
	}
	return true;
}

C++解题报告:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值