CV之OD之SSD:基于tensorflow框架利用SSD算法实现目标检测(21类)案例应用

本文详细介绍如何使用TensorFlow框架下的SSD算法进行21类目标检测,包括SSD网络结构、参数配置及实现代码,为计算机视觉领域的物体识别提供实用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CV之OD之SSD:基于tensorflow框架利用SSD算法实现目标检测(21类)案例应用

目录

基于tensorflow框架利用SSD算法实现目标检测(21类)

输出结果

SSD代码


基于tensorflow框架利用SSD算法实现目标检测(21类)

输出结果

VOC_LABELS = {
    'none': (0, 'Background'),
    'aeroplane': (1, 'Vehicle'),
    'bicycle': (2, 'Vehicle'),
    'bird': (3, 'Animal'),
    'boat': (4, 'Vehicle'),
    'bottle': (5, 'Indoor'),
    'bus': (6, 'Vehicle'),
    'car': (7, 'Vehicle'),
    'cat': (8, 'Animal'),
    'chair': (9, 'Indoor'),
    'cow': (10, 'Animal'),
    'diningtable': (11, 'Indoor'),
    'dog': (12, 'Animal'),
    'horse': (13, 'Animal'),
    'motorbike': (14, 'Vehicle'),
    'person': (15, 'Person'),
    'pottedplant': (16, 'Indoor'),
    'sheep': (17, 'Animal'),
    'sofa': (18, 'Indoor'),
    'train': (19, 'Vehicle'),
    'tvmonitor': (20, 'Indoor'),
}

SSD代码


class SSDNet(object):
    """Implementation of the SSD VGG-based 300 network.

    The default features layers with 300x300 image input are:
      conv4 ==> 38 x 38
      conv7 ==> 19 x 19
      conv8 ==> 10 x 10
      conv9 ==> 5 x 5
      conv10 ==> 3 x 3
      conv11 ==> 1 x 1
    The default image size used to train this network is 300x300.
    """
    default_params = SSDParams(
        img_shape=(300, 300),
        num_classes=21,
        no_annotation_label=21,
        feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'],
        feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)],
        anchor_size_bounds=[0.15, 0.90],
        # anchor_size_bounds=[0.20, 0.90],
        anchor_sizes=[(21., 45.),
                      (45., 99.),
                      (99., 153.),
                      (153., 207.),
                      (207., 261.),
                      (261., 315.)],
        # anchor_sizes=[(30., 60.),
        #               (60., 111.),
        #               (111., 162.),
        #               (162., 213.),
        #               (213., 264.),
        #               (264., 315.)],
        anchor_ratios=[[2, .5],
                       [2, .5, 3, 1./3],
                       [2, .5, 3, 1./3],
                       [2, .5, 3, 1./3],
                       [2, .5],
                       [2, .5]],
        anchor_steps=[8, 16, 32, 64, 100, 300],
        anchor_offset=0.5,
        normalizations=[20, -1, -1, -1, -1, -1],
        prior_scaling=[0.1, 0.1, 0.2, 0.2]
        )

    def __init__(self, params=None):
        """Init the SSD net with some parameters. Use the default ones
        if none provided.
        """
        if isinstance(params, SSDParams):
            self.params = params
        else:
            self.params = SSDNet.default_params

    # ======================================================================= #
    def net(self, inputs,
            is_training=True,
            update_feat_shapes=True,
            dropout_keep_prob=0.5,
            prediction_fn=slim.softmax,
            reuse=None,
            scope='ssd_300_vgg'):
        """SSD network definition.
        """
        r = ssd_net(inputs,
                    num_classes=self.params.num_classes,
                    feat_layers=self.params.feat_layers,
                    anchor_sizes=self.params.anchor_sizes,
                    anchor_ratios=self.params.anchor_ratios,
                    normalizations=self.params.normalizations,
                    is_training=is_training,
                    dropout_keep_prob=dropout_keep_prob,
                    prediction_fn=prediction_fn,
                    reuse=reuse,
                    scope=scope)
        # Update feature shapes (try at least!)
        if update_feat_shapes:
            shapes = ssd_feat_shapes_from_net(r[0], self.params.feat_shapes)
            self.params = self.params._replace(feat_shapes=shapes)
        return r

    def arg_scope(self, weight_decay=0.0005, data_format='NHWC'):
        """Network arg_scope.
        """
        return ssd_arg_scope(weight_decay, data_format=data_format)

    def arg_scope_caffe(self, caffe_scope):
        """Caffe arg_scope used for weights importing.
        """
        return ssd_arg_scope_caffe(caffe_scope)

    # ======================================================================= #
    def update_feature_shapes(self, predictions):
        """Update feature shapes from predictions collection (Tensor or Numpy
        array).
        """
        shapes = ssd_feat_shapes_from_net(predictions, self.params.feat_shapes)
        self.params = self.params._replace(feat_shapes=shapes)

    def anchors(self, img_shape, dtype=np.float32):
        """Compute the default anchor boxes, given an image shape.
        """
        return ssd_anchors_all_layers(img_shape,
                                      self.params.feat_shapes,
                                      self.params.anchor_sizes,
                                      self.params.anchor_ratios,
                                      self.params.anchor_steps,
                                      self.params.anchor_offset,
                                      dtype)

    def bboxes_encode(self, labels, bboxes, anchors,
                      scope=None):
        """Encode labels and bounding boxes.
        """
        return ssd_common.tf_ssd_bboxes_encode(
            labels, bboxes, anchors,
            self.params.num_classes,
            self.params.no_annotation_label,
            ignore_threshold=0.5,
            prior_scaling=self.params.prior_scaling,
            scope=scope)

    def bboxes_decode(self, feat_localizations, anchors,
                      scope='ssd_bboxes_decode'):
        """Encode labels and bounding boxes.
        """
        return ssd_common.tf_ssd_bboxes_decode(
            feat_localizations, anchors,
            prior_scaling=self.params.prior_scaling,
            scope=scope)

    def detected_bboxes(self, predictions, localisations,
                        select_threshold=None, nms_threshold=0.5,
                        clipping_bbox=None, top_k=400, keep_top_k=200):
        """Get the detected bounding boxes from the SSD network output.
        """
        # Select top_k bboxes from predictions, and clip
        rscores, rbboxes = \
            ssd_common.tf_ssd_bboxes_select(predictions, localisations,
                                            select_threshold=select_threshold,
                                            num_classes=self.params.num_classes)
        rscores, rbboxes = \
            tfe.bboxes_sort(rscores, rbboxes, top_k=top_k)
        # Apply NMS algorithm.
        rscores, rbboxes = \
            tfe.bboxes_nms_batch(rscores, rbboxes,
                                 nms_threshold=nms_threshold,
                                 keep_top_k=keep_top_k)
        if clipping_bbox is not None:
            rbboxes = tfe.bboxes_clip(clipping_bbox, rbboxes)
        return rscores, rbboxes

    def losses(self, logits, localisations,
               gclasses, glocalisations, gscores,
               match_threshold=0.5,
               negative_ratio=3.,
               alpha=1.,
               label_smoothing=0.,
               scope='ssd_losses'):
        """Define the SSD network losses.
        """
        return ssd_losses(logits, localisations,
                          gclasses, glocalisations, gscores,
                          match_threshold=match_threshold,
                          negative_ratio=negative_ratio,
                          alpha=alpha,
                          label_smoothing=label_smoothing,
                          scope=scope)

### 目标检测技术概述 目标检测是一种计算机视觉任务,旨在识别图像或视频中的对象并标注其边界框。其实现方法和算法框架可以根据所采用的技术分为两大:传统方法和基于深度学习的方法。 #### 传统目标检测方法 传统的目标检测方法依赖于手工设计的特征提取技术和分器。这方法通常包括以下几个阶段: 1. **候选区域生成** 使用滑动窗口或其他机制生成可能包含目标的候选区域。 2. **特征提取** 提取候选区域的手工设计特征,常用的特征描述子包括 SIFT[^2]、SURF 和 HOG[^3] 等。其中,HOG 特征结合线性支持向量机 (SVM) 是一种经典的行人检测方案。 3. **分与回归** 利用训练好的分模型(如 SVM 或 AdaBoost)判断候选区域是否为目标,并调整边界框的位置和大小。 4. **后处理** 非极大值抑制 (Non-Maximum Suppression, NMS)[^1] 被用于消除冗余的重叠检测结果。 #### 基于深度学习的目标检测方法 随着深度学习的发展,卷积神经网络 (Convolutional Neural Networks, CNNs) 成为了主流工具。此方法可以进一步划分为 Two-Stage 和 One-Stage 型。 ##### Two-Stage 方法 Two-Stage 方法的核心思想是先生成候选区域,再对其进行细化分和定位。典型的代表包括: - **R-CNN 及其变种** R-CNN 将目标检测分解为两个步骤:首先使用 Selective Search 等方法生成候选区域,然后通过 CNN 提取特征并送入 SVM 进行分。后续改进版本 Fast R-CNN 和 Faster R-CNN 分别优化了速度和性能。 - **Faster R-CNN** 引入 Region Proposal Network (RPN),实现了候选区域生成和目标检测的一体化[^3]。 ##### One-Stage 方法 One-Stage 方法直接预测目标别及其位置,无需显式的候选区域生成过程。常见的算法有: - **YOLO (You Only Look Once)** YOLO 将输入图像划分成网格,并在每个单元格中同时预测多个边界框及其对应的置信度分数[^3]。该系列不断迭代,在保持高效率的同时提升了准确性。 - **SSD (Single Shot MultiBox Detector)** SSD 在不同尺度的 feature maps 上进行检测,从而提高了对多尺度目标尤其是小目标的检测能力[^5]。 以下是两种经典算法的 Python 实现示例: ```python # YOLOv3 的 PyTorch 推理代码片段 import torch from models import * # 自定义模型文件 def detect_yolo(image_path): model = Darknet('cfg/yolov3.cfg', img_size=416).to(device) model.load_state_dict(torch.load('weights/yolov3.weights')) image = cv2.imread(image_path) detections = model(image) return detections ``` ```python # SSDTensorFlow 推理代码片段 import tensorflow as tf from object_detection.utils import visualization_utils as vis_util def detect_ssd(image_np): detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.compat.v1.GraphDef() with tf.io.gfile.GFile('frozen_inference_graph.pb', 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') with tf.compat.v1.Session(graph=detection_graph) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') boxes = detection_graph.get_tensor_by_name('detection_boxes:0') output_dict = sess.run([boxes], feed_dict={image_tensor: np.expand_dims(image_np, axis=0)}) return output_dict ``` ### 总结 目标检测技术经历了从传统方法到深度学习方法的演变。前者依靠手工设计特征,后者则充分利用 CNN 的强大表征能力。具体选择哪种方法取决于应用场景的要求以及计算资源的限制。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值