【HDU 1059】Dividing(多重背包)

本文探讨了如何将多重背包问题转化为0-1背包问题,并通过将物品数量转换为二进制形式来优化时间复杂度。以HDU 1059题目为例,详细解析了如何判断一组物品能否被平分为两组。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1059

题意:有6种物品,价值分别是1,2,3,4,5,6,每种物品有n[ i ]个,,问是否能将其平分。

思路:分析可知这是一个多重背包问题,为了简化问题,将多重背包转化成0-1背包,另外,还要注意的是,要将n转化成二进制来优化时间复杂度。(任何数都有n=k_{1}2^{0}+k_{2}2^{1}+k_{3}2^{2}+...+k_{x}2^{y})例如7(7=1+2+4)个价值为3的物品,就可以将其转化成3个价值分别为3,6,12的物品,这样就可以减少不少时间。

My  Code:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
int v[20005],W,f[150000];
int main()
{
    int n[10],t = 1;
    while(1)
    {
        W = 0;
        int k = 0;
        for(int i = 1; i <= 6; i++)
        {
            cin >> n[i];
            W += n[i] *i;
            for(int j = 1; j <= n[i]; j = j<<1)///左移一位相当于乘2
            {
                v[k++] = j*i;///每个的价值等于它的二进制*i
                n[i] -= j;
            }
            if(n[i] != 0) v[k++] = n[i]*i;
        }
        if(W == 0) break;
        printf("Collection #%d:\n",t++);
        if(W % 2 != 0)///如果总重量是奇数,必定不能平分
        {
            printf("Can't be divided.\n\n");
            continue;
        }
        memset(f,0,sizeof(f));///转化成0-1背包,而且其价值=重量
        for(int i = 0; i < k; i++)
        {
            for(int j = W/2; j >= v[i]; j--)
                f[j] = max(f[j],f[j-v[i]]+v[i]);
        }
        if(f[W/2] == W/2) printf("Can be divided.\n\n");
        else printf("Can't be divided.\n\n");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值