深度学习 —— 个人学习笔记3(Softmax_cuda)

声明

  本文章为个人学习使用,版面观感若有不适请谅解,文中知识仅代表个人观点,若出现错误,欢迎各位批评指正。

八、图像分类及数据集的获取

  • 图像分类及可视化
import torch
import time
import torchvision
import matplotlib.pyplot as plt
from torch.utils import data
from torchvision import transforms
from matplotlib_inline import backend_inline

################  图像分类数据集的下载及可视化处理  ################
class Timer:
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        self.tik = time.time()

    def stop(self):
        self.times.append(time.time() - self.tik)
        return self.times[-1]


backend_inline.set_matplotlib_formats('svg')

trans = transforms.ToTensor()                                                     # 通过 ToTensor 实例将图像数据从 PIL 类型变换成32位浮点数格式
mnist_train = torchvision.datasets.FashionMNIST(                                  # 通过内置函数下载数据集,由于本人已提前下好,故 download 为 False
    root="../data", train=True, transform=trans, download=False)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=False)

print("训练集数量:", len(mnist_train), "测试集数量:", len(mnist_test))

print("训练集中第一个数据尺寸:", mnist_train[0][0].shape)                            # 通道数为 1,长宽分别为 28

def get_fashion_mnist_labels(labels):                                             # 设置 Fashion-MNIST 数据集的文本标签
    text_labels = ['T恤', '裤子', '套衫', '连衣裙', '外套',
                   '凉鞋', '衬衫', '运动鞋', '包', '短靴']
    return [text_labels[int(i)] for i in labels]

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):                # 通过数据集绘制图像
    plt.rcParams['font.sans-serif'] = ['SimSun']
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes


X, y = next(iter(data.DataLoader(mnist_train, batch_size=9)))                     # 利用 next 函数拿到下一个数据,总数为 9
show_images(X.reshape(9, 28, 28), 3, 3, titles=get_fashion_mnist_labels(y))       # 显示 3 * 3 的数据集
plt.show()

batch_size = 256                                                                  # 设置小批量为 256

def get_dataloader_workers():
    """使用 4 个进程来读取数据"""
    return 4


train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,               # 通过内置数据迭代器,随机打乱所有样本,并读取小批量
                             num_workers=get_dataloader_workers())

timer = Timer()                                                                   # 获取当前时间
for X, y in train_iter:                                                           # 遍历训练集,并将训练集数据放入 GPU
    X = X.cuda()
    y = y.cuda()
    continue

print(f'遍历一遍训练集所需时间:{timer.stop():.2f} sec')

def load_data_fashion_mnist(batch_size, resize=None):
    """下载 Fashion-MNIST 数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=False)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=False)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))


train_iter, test_iter = load_data_fashion_mnist(32, resize=64)                    # 测试定义的函数图像大小调整功能
for X, y in train_iter:
    print("X.shape:", X.shape, "\nX.dtype:", X.dtype, "\ny.shape:", y.shape, "\ny.dtype:", y.dtype)
    break

  • softmax 回归的从零开始实现
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from IPython import display
import matplotlib.pyplot as plt
from matplotlib_inline import backend_inline

################  softmax 回归的从零开始实现  ################
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs)
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        try:
            img = numpy(img)
        except:
            pass
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

def get_dataloader_workers():
    """使用 4 个进程来读取数据"""
    return 4

def get_fashion_mnist_labels_chinese(labels):                                             # 设置 Fashion-MNIST 数据集的文本标签
    text_labels = ['T恤', '裤子', '套衫', '连衣裙', '外套',
                   '凉鞋', '衬衫', '运动鞋', '包', '短靴']
    return [text_labels[int(i)] for i in labels]

def get_fashion_mnist_labels_english(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

def load_data_fashion_mnist(batch_size, resize=None):
    """下载 Fashion-MNIST 数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=False)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=False)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))


batch_size = 256                                                                  # 设置批量大小为 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)                       # 引入数据集,此处函数为图像分类及可视化中定义函数

num_inputs = 784                                                                  # 设置输入大小为 28*28=784
num_outputs = 10                                                                  # 设置输出大小为 10(10个类别)

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs))                         # 初始化参数 W
b = torch.zeros(num_outputs)                                                      # 初始化参数 b
W, b = W.cuda(), b.cuda()                                                         # 将参数 W, b 放入 GPU
W.requires_grad_(True)                                                            # 让 backward 可以追踪这个参数并且计算它的梯度
b.requires_grad_(True)                                                            # 让 backward 可以追踪这个参数并且计算它的梯度

def softmax(X):                                                                   # 定义 Softmax 函数
    X_exp = torch.exp(X).cuda()
    partition = X_exp.sum(1, keepdim=True).cuda()
    return X_exp / partition                                                      # 这里应用了广播机制

def net(X):                                                                       # 实现 Softmax 回归模型
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)              #  y = Xw + b

def cross_entropy(y_hat, y):                                                      # 定义交叉熵损失函数
    return - torch.log(y_hat[range(len(y_hat)), y])                               # y = - [ yln(y_hat) + (1-y)ln(1-y_hat) ]

def accuracy(y_hat, y):                                                           # 定义一个函数来为预测正确的数量计数
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y                                                # bool 类型,若预测结果与实际结果一致,则为 True
    return float(cmp.type(y.dtype).sum())

def evaluate_accuracy(net, data_iter):                                            # 定义一个函数来计算模型的精度
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval().cuda()                                                         # 将模型设置为评估模式
    metric = Accumulator(2)                                                       # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            X, y = X.cuda(), y.cuda()
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

class Accumulator:                                                                # 定义一个实用程序类 Accumulator,用于对多个变量进行累加
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

def train_epoch(net, train_iter, loss, updater):                                  # 定义一个函数来训练一个迭代周期
    """训练模型一个迭代周期"""
    if isinstance(net, torch.nn.Module):
        net.train().cuda()                                                        # 将模型设置为训练模式
    metric = Accumulator(3)                                                       # 训练损失总和、训练准确度总和、样本数
    for X, y in train_iter:                                                       # 计算梯度并更新参数
        X, y = X.cuda(), y.cuda()
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):                            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:                                                                     # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    return metric[0] / metric[2], metric[1] / metric[2]                           # 返回训练损失和训练精度

def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)
    axes.set_xscale(xscale), axes.set_yscale(yscale)
    axes.set_xlim(xlim),     axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()

class Animator:                                                                   # 定义一个在动画中绘制数据的实用程序类 Animator
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        backend_inline.set_matplotlib_formats('svg')
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        # 通过以下两行代码实现了在PyCharm中显示动图
        plt.draw()
        plt.pause(interval=0.001)
        display.clear_output(wait=True)
        plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

def train(net, train_iter, test_iter, loss, num_epochs, updater):                 # 定义一个训练函数
    """训练模型"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):                                               # 该训练函数将会运行 num_epochs 个迭代周期
        train_metrics = train_epoch(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

# 定义优化算法
def sgd(params, lr, batch_size):                                                  # 给定参数,学习率以及每批量尺寸
    with torch.no_grad():                                                         # 不需计算梯度
        for param in params:                                                      # 对样本中每个参数更新
            param -= lr * param.grad / batch_size                                 # param = param - lr * param.grad / batch_size,最后一个批量可能总数不满足 batch_size,但此例仅做演示,不做深层次研究
            param.grad.zero_()                                                    # 计算梯度后需要归零,否则内存会遵循递增原则,影响下一次数据更新


lr = 0.1                                                                          # 设置学习率为0.1

def updater(batch_size):                                                          # 使用定义好的优化算法来优化模型的损失函数
    return sgd([W, b], lr, batch_size)


num_epochs = 15                                                                   # 设定训练模型的迭代周期为 15
train(net, train_iter, test_iter, cross_entropy, num_epochs, updater)             # 调用训练函数
plt.show()

def predict(net, test_iter, n=9):                                                 # 定义一个预测函数,预测 n=9 个数据
    """预测标签"""
    for X, y in test_iter:                                                        # 获取测试集数据并存入 GPU
        X, y = X.cuda(), y.cuda()
        break
    trues = get_fashion_mnist_labels_chinese(y)                                   # 真实标签采用宋体
    preds = get_fashion_mnist_labels_english(net(X).argmax(axis=1))               # 预测标签采用英文
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    for X, y in test_iter:
        X = X.cpu()                                                               # 由于 numpy 不能处理 CUDA tensor,先将数据传回 CPU
        break
    show_images(
        X[0:n].reshape((n, 28, 28)), 3, 3, titles=titles[0:n])                    # 展现数据,3 行,3 列,由于此处仅为示例,故直接写为定值


predict(net, test_iter)                                                           # 调用预测函数
plt.show()                                                                        # 为方便区分,预测标签为英文,真实标签为中文

  • softmax 回归的简洁实现
import torch
import torchvision
from torch import nn
from torch.utils import data
from torchvision import transforms
from IPython import display
import matplotlib.pyplot as plt
from matplotlib_inline import backend_inline

################  softmax 回归的简洁实现  ################
def get_dataloader_workers():
    """使用 4 个进程来读取数据"""
    return 4

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs)
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        try:
            img = numpy(img)
        except:
            pass
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

def get_fashion_mnist_labels_chinese(labels):                                             # 设置 Fashion-MNIST 数据集的文本标签
    text_labels = ['T恤', '裤子', '套衫', '连衣裙', '外套',
                   '凉鞋', '衬衫', '运动鞋', '包', '短靴']
    return [text_labels[int(i)] for i in labels]

def get_fashion_mnist_labels_english(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

def load_data_fashion_mnist(batch_size, resize=None):
    """下载 Fashion-MNIST 数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=False)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=False)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))


batch_size = 256                                                                  # 设置批量大小为 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)                       # 引入数据集,此处函数为图像分类及可视化中定义函数

def accuracy(y_hat, y):                                                           # 定义一个函数来为预测正确的数量计数
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y                                                # bool 类型,若预测结果与实际结果一致,则为 True
    return float(cmp.type(y.dtype).sum())

def evaluate_accuracy(net, data_iter):                                            # 定义一个函数来计算模型的精度
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval().cuda()                                                         # 将模型设置为评估模式
    metric = Accumulator(2)                                                       # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            X, y = X.cuda(), y.cuda()
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

class Accumulator:                                                                # 定义一个实用程序类 Accumulator,用于对多个变量进行累加
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

def train_epoch(net, train_iter, loss, updater):                                  # 定义一个函数来训练一个迭代周期
    """训练模型一个迭代周期"""
    if isinstance(net, torch.nn.Module):
        net.train().cuda()                                                        # 将模型设置为训练模式
    metric = Accumulator(3)                                                       # 训练损失总和、训练准确度总和、样本数
    for X, y in train_iter:                                                       # 计算梯度并更新参数
        X, y = X.cuda(), y.cuda()
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):                            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:                                                                     # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    return metric[0] / metric[2], metric[1] / metric[2]                           # 返回训练损失和训练精度

def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)
    axes.set_xscale(xscale), axes.set_yscale(yscale)
    axes.set_xlim(xlim),     axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()

class Animator:                                                                   # 定义一个在动画中绘制数据的实用程序类 Animator
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        backend_inline.set_matplotlib_formats('svg')
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        # 通过以下两行代码实现了在PyCharm中显示动图
        plt.draw()
        plt.pause(interval=0.001)
        display.clear_output(wait=True)
        plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

def train(net, train_iter, test_iter, loss, num_epochs, updater):                 # 定义一个训练函数
    """训练模型"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):                                               # 该训练函数将会运行 num_epochs 个迭代周期
        train_metrics = train_epoch(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

# PyTorch 不会隐式地调整输入的形状,因此在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)).cuda()                      # 在 Sequential 中添加一个带有 10 个输出的全连接层

def init_weights(m):                                                              # 以均值 0 和标准差 0.01 随机初始化权重
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01).cuda()

net.apply(init_weights).cuda()

# 定义损失函数,在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数,这是一种类似“LogSumExp 技巧”的方式
loss = nn.CrossEntropyLoss(reduction='none').cuda()

# 使用学习率为 0.1 的小批量随机梯度下降作为优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

num_epochs = 5                                                                    # 设定训练模型的迭代周期为 5
train(net, train_iter, test_iter, loss, num_epochs, trainer)                      # 调用训练函数
plt.show()

def predict(net, test_iter, n=9):                                                 # 定义一个预测函数,预测 n=9 个数据
    """预测标签"""
    for X, y in test_iter:                                                        # 获取测试集数据并存入 GPU
        X, y = X.cuda(), y.cuda()
        break
    trues = get_fashion_mnist_labels_chinese(y)                                   # 真实标签采用中文
    preds = get_fashion_mnist_labels_english(net(X).argmax(axis=1))               # 预测标签采用英文
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    for X, y in test_iter:
        X = X.cpu()                                                               # 由于 numpy 不能处理 CUDA tensor,先将数据传回 CPU
        break
    show_images(X[0:n].reshape((n, 28, 28)), 3, 3, titles=titles[0:n])            # 展现数据,3 行,3 列,由于此处仅为示例,故直接写为定值


predict(net, test_iter)                                                           # 调用预测函数
plt.show()                                                                        # 为方便区分,预测标签为英文,真实标签为中文


  文中部分知识参考:B 站 —— 跟李沐学AI;百度百科

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值