
CU_Courses
文章平均质量分 92
Alex Tech Bolg
MSDS@Columbia University
展开
-
自然语言处理教程-注意力模型|Natural Language Processing with Attention Models
NLP,Transformer,Bert原创 2022-10-07 06:15:39 · 602 阅读 · 0 评论 -
应用深度学习课程笔记|Review of 4995 Applied Deep Learning
Deep Dream里面能够改变的参数不是filter,而是input image,通过调整input image,来使得output image as high as possible (excites the layer)大部分的参数来自于最后一层dense layer,通过global average pooling可以极大减少参数数量。原创 2022-09-26 11:02:47 · 1220 阅读 · 0 评论 -
Review of 4705 NLP
ContentsLecture 12: Lexical Semantics (part I) - Word Representations and Word Embeddings.Lecture 13: Machine Learning: Linear and Log-Linear ModelsLecture 14: Machine Learning: Feed-forward Neural Networks, Autoencoders/embeddings, Dense networksAutoencod原创 2022-05-10 12:45:59 · 318 阅读 · 0 评论 -
Review of 4121 Computer System for Data Science
ContentsComputer systems and performance rules of thumbData centersDatabasesStorage and distributed file systemsDistributed systemsMapreduceDistributed analytics and streamingCachingAdditional informationComputer systems and performance rules of thumbLa原创 2022-04-24 08:57:40 · 967 阅读 · 0 评论 -
Review of 4721 Machine Learning
ContentsMultivariate GaussiansReview: Variance and covarianceMultivariate GaussiansPCA/ SVDMultivariate GaussiansReview: Variance and covarianceCovariance matrix: X⃗=(X1,X2,…,Xd)\vec{X} = (X_1, X_2, \dots, X_d)X=(X1,X2,…,Xd), cov(X⃗)cov(\vec{X})cov原创 2022-04-21 09:38:22 · 2392 阅读 · 0 评论 -
Review of Linear Algebra
ContentsTranspose and Inverse(AB)−1=B−1A−1(AB)^{-1} = B^{-1} A^{-1} (AB)−1=B−1A−1(AT)−1=(A−1)T(A^T)^{-1} = (A^{-1})^{T}(AT)−1=(A−1)TAA−1=I, (A−1)T(AT)=IAA^{-1} = I,\ (A^{-1})^T(A^T) = I AA−1=I, (A−1)T(AT)=IPermutation matrixP−1=PT P^{-1} =原创 2022-04-07 12:01:17 · 388 阅读 · 0 评论 -
Review - 5703 Statistical Inference and Modeling
ContentLecture 1 IntroLecture 2 EstimationEstimation:Two estimation methodsOptimality in estimationLecture 3 Confidence intervals and hypothesis testingLecture 1 IntroLLN (Law of large numbers)CLT (Central Limit Theorem)CMT (Continuous Mapping Theorem原创 2022-02-08 04:06:28 · 1153 阅读 · 0 评论 -
Review of 4246 Algorithms for Data Science
ContentsImportant algorithmsNoteLecture1: Insertion sort, efficient algorithmLecture2: Merge sortLecture3: Binary search, quicksortLecture5: Graphs, Breadth-First Search (BFS)Lecture6: Depth-first search, topological sortingLecture7&8: Strongly connect原创 2021-12-28 00:40:38 · 668 阅读 · 0 评论