http://codeforces.com/contest/750/problem/E
A string t is called nice if a string "2017" occurs in t as a subsequence but a string "2016" doesn't occur in t as a subsequence. For example, strings "203434107" and "9220617" are nice, while strings "20016", "1234" and "20167" aren't nice.
The ugliness of a string is the minimum possible number of characters to remove, in order to obtain a nice string. If it's impossible to make a string nice by removing characters, its ugliness is - 1.
Limak has a string s of length n, with characters indexed 1 through n. He asks you q queries. In the i-th query you should compute and print the ugliness of a substring (continuous subsequence) of s starting at the index ai and ending at the index bi (inclusive).
Input
The first line of the input contains two integers n and q (4 ≤ n ≤ 200 000, 1 ≤ q ≤ 200 000) — the length of the string s and the number of queries respectively.
The second line contains a string s of length n. Every character is one of digits '0'–'9'.
The i-th of next q lines contains two integers ai and bi (1 ≤ ai ≤ bi ≤ n), describing a substring in the i-th query.
Output
For each query print the ugliness of the given substring.
Examples
input
Copy
8 3 20166766 1 8 1 7 2 8
output
Copy
4 3 -1
input
Copy
15 5 012016662091670 3 4 1 14 4 15 1 13 10 15
output
Copy
-1 2 1 -1 -1
input
Copy
4 2 1234 2 4 1 2
output
Copy
-1 -1
Note
In the first sample:
- In the first query, ugliness("20166766") = 4 because all four sixes must be removed.
- In the second query, ugliness("2016676") = 3 because all three sixes must be removed.
- In the third query, ugliness("0166766") = - 1 because it's impossible to remove some digits to get a nice string.
In the second sample:
- In the second query, ugliness("01201666209167") = 2. It's optimal to remove the first digit '2' and the last digit '6', what gives a string "010166620917", which is nice.
- In the third query, ugliness("016662091670") = 1. It's optimal to remove the last digit '6', what gives a nice string "01666209170".
- 给你一个字符串,Q次询问,询问区间中一定要有子序列2017,一定没有子序列2016的最小删除个数是多少,若是不行输出-1
- val[i][j]:表示该区间有’2017’中的[i,j)子序列而没有[i,j]子序列,并且不会出现’2016’,所需要删除的最少字符数
- 比如val[0][2]表示该区间能够出现’20’但不能出现’201’需要删除的最少字符数。又如arr[1][1]表示不会出现’1’。
- 需要注意的是’6’不能出现在[3][3](即’1’之后,’7’之前)和[4][4](即’7’之后)。
#include <bits/stdc++.h>
using namespace std;
const int INF=1e9;
const int maxn=2e5+10;
struct node
{
int val[5][5];
node() //新建初始化
{
for(int i=0;i<5;i++)
for(int j=0;j<5;j++)
val[i][j]=INF;
}
node operator + (node x) //重载运算符 矩阵相加
{
node ans;
for(int i=0;i<5;i++)
for(int j=0;j<5;j++)
for(int k=0;k<5;k++)
ans.val[i][j]=min(ans.val[i][j],val[i][k]+x.val[k][j]);
return ans;
}
}tree[maxn*4];
char ch[10]={'2','0','1','7','6'};
char s[maxn];
node pushup(node &a,node &b)
{
node res;
for(int i=0;i<5;i++)
for(int j=i;j<5;j++)
for(int k=i;k<=j;k++)
res.val[i][j]=min(res.val[i][j],a.val[i][k]+b.val[k][j]);
return res;
}
int Find(char c)
{
for(int i=0;i<5;i++)
{
if(ch[i]==c)
return i;
}
return -1;
}
void build(int l,int r,int rt)
{
if(l==r)
{
int t=Find(s[l]);
for(int i=0;i<5;i++)
{
tree[rt].val[i][i]=0;
}
if(t!=-1&&t<4) //是2017中的
{
tree[rt].val[t][t+1]=0;
tree[rt].val[t][t]=1;
}
else if(t==4) //有6
{
tree[rt].val[3][3]=tree[rt].val[4][4]=1;
}
return;
}
int mid=(l+r)/2;
build(l,mid,2*rt);
build(mid+1,r,2*rt+1);
tree[rt]=pushup(tree[2*rt],tree[2*rt+1]);
}
node query(int l,int r,int rt,int L,int R)
{
if(L<=l&&R>=r)
{
return tree[rt];
}
int mid=(l+r)/2;
if(mid<L) return query(mid+1,r,2*rt+1,L,R);
if(mid>=R) return query(l,mid,2*rt,L,R);
return query(l,mid,2*rt,L,R)+query(mid+1,r,2*rt+1,L,R); //注意一定要左区间在前,右区间在后,不然答案会不对
}
int main()
{
int n,m,l,r;
scanf("%d%d%s",&n,&m,s+1);
build(1,n,1);
while(m--)
{
node ans;
scanf("%d%d",&l,&r);
ans=query(1,n,1,l,r);
if(ans.val[0][4]==INF)
printf("-1\n");
else
printf("%d\n",ans.val[0][4]);
}
return 0;
}