bfs dfs 专题(二)

本文深入探讨了深度优先搜索(DFS)的原理及其与广度优先搜索(BFS)的区别。DFS通常使用递归实现,虽然代码量小,但时间复杂度较高,适合解决需要遍历所有路径的问题。文章通过两个实例——找油田和素数环问题,展示了DFS的应用,并给出了相应的AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DFS:

       深搜相较于广搜就有点困难了,因为他是用递归实现的,凡事沾点递归就难了。别看他代码量比广搜小,但其的时间复杂度远比广搜大,因为广搜是用大量空间来减少时间,而深搜是用回溯法。但深搜又是走遍所有可行的路线,所有时间大大增加。但是你可以剪枝啊,这又是另一个专题了。算无止境。对于递归不要想得太明白,容易绕进去,知道他的作用就可以。

基本模板:

void dfs(int x)
{
	if (x == n&&pirme(a[n] + a[1]))//搜到了终点便输出并返回
	{
		for (int i = 1; i<n; i++)
			cout << a[i] << " ";
		cout << a[n] << endl;
		return;
	}
	else
	{
		for (int i = 2; i <= n; i++)//不是终点就发展下一个点
		{
			if (t[i] == 0 && pirme(i + a[x]))
			{
				a[x + 1] = i;
				t[i] = 1;//标记为走过的点
				dfs(x + 1);//从新的点搜下去
				t[i] = 0;//关键步骤!!!取消标记
			}
		}
	}
}

相关例题: 

Oil Deposits

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 21636 Accepted: 11267

Description

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

Input

The input contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 <= m <= 100 and 1 <= n <= 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either `*', representing the absence of oil, or `@', representing an oil pocket. 
 

Output

are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

Sample Input

1 1
*
3 5
*@*@*
**@**
*@*@*
1 8
@@****@*
5 5 
****@
*@@*@
*@**@
@@@*@
@@**@
0 0

Sample Output

0
1
2
2

题目大意:找油田,既不相邻的油田有几块,注意斜角也算连在一起的。

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX = 105;
char mapp[MAX][MAX];
int n, m;
int dirstion[8][2] = { 1,-1,1,0,0,1,0,-1,-1,0,-1,1,-1,-1,1,1 };

void dfs(int x, int y)
{
	mapp[x][y] = '*';
	for (int i = 0; i<8; i++)
	{
		int a = x + dirstion[i][0];
		int b = y + dirstion[i][1];
		if (a >= 0 && a<n&&b >= 0 && b<m&&mapp[a][b] == '@')
		{
			dfs(a, b);
		}
	}
}
int main()
{
	while (~scanf("%d %d", &n, &m) && n&&m)
	{
		int sum = 0;
		for (int i = 0; i<n; i++)
		{
			for (int j = 0; j<m; j++)
				cin >> mapp[i][j];
		}
		for (int i = 0; i<n; i++)
		{
			for (int j = 0; j<m; j++)
			{
				if (mapp[i][j] == '@')
				{
					dfs(i, j);
					sum++;
				}
			}
		}
		cout << sum << endl;

	}
	return 0;
}

Prime Ring Problem

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 66006    Accepted Submission(s): 28270


 

Problem Description

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

 

 

Input

n (0 < n < 20).

Output

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.

 

Sample Input

6

8

Sample Output

Case 1:

1 4 3 2 5 6

1 6 5 2 3 4

Case 2:

1 2 3 8 5 6 7 4

1 2 5 8 3 4 7 6

1 4 7 6 5 8 3 2

1 6 7 4 3 8 5 2

题目大意:素数环,环上任意两个相邻的数加起来为素数。

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX = 105;
char mapp[MAX][MAX];
int n, m;
int dirstion[8][2] = { 1,-1,1,0,0,1,0,-1,-1,0,-1,1,-1,-1,1,1 };
int t[21], a[21];
bool pirme(int x)//判断是否为素数
{
	int i;
	if (x == 1)
		return false;
	for (i = 2; i<x; i++)
	{
		if (x%i == 0)
			break;
	}
	if (i >= x)
		return true;
	else
		return false;
}
void dfs(int x)
{
	if (x == n&&pirme(a[n] + a[1]))
	{
		for (int i = 1; i<n; i++)
			cout << a[i] << " ";
		cout << a[n] << endl;
		return;
	}
	else
	{
		for (int i = 2; i <= n; i++)
		{
			if (t[i] == 0 && pirme(i + a[x]))
			{
				a[x + 1] = i;
				t[i] = 1;
				dfs(x + 1);
				t[i] = 0;
			}
		}
	}
}
int main()
{
	int t1 = 0;
	while (~scanf("%d", &n))
	{
		memset(t, 0, sizeof(t));
		memset(a, 0, sizeof(a));
		a[1] = 1;
		// if(t1!=0) cout<<endl;            //一定注意输出格式
		t1++;
		cout << "Case " << t1 << ":" << endl;
		dfs(1);
		cout << endl;
	}


	return 0;
}
内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值