import numpy as np import cv2 cap = cv2.VideoCapture(0) # take first frame of the video ret,frame = cap.read() # setup initial location of window r,h,c,w = 300,200,400,300 # simply hardcoded the values track_window = (c,r,w,h) roi = frame[r:r+h, c:c+w] hsv_roi =cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((160., 30.,32.)), np.array((180.,120.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) kalman = cv2.KalmanFilter(4,2) kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32) kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32) kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03 measurement = np.array((2,1), np.float32) prediction = np.zeros((2,1), np.float32) def center(points): x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4.0 y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4.0 return np.array([np.float32(x), np.float32(y)], np.float32) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) ret, track_window = cv2.CamShift(dst, track_window, term_crit) pts = cv2.boxPoints(ret) pts = np.int0(pts) (cx, cy), radius = cv2.minEnclosingCircle(pts) kalman.correct(center(pts)) img2 = cv2.polylines(frame,[pts],True, 255,2) prediction = kalman.predict() cv2.circle(frame, (prediction[0], prediction[1]), int(radius), (0, 255, 0)) cv2.imshow('img2',img2) k = cv2.waitKey(60) & 0xff if k == 27: break else: break cv2.destroyAllWindows() cap.release()
卡尔曼滤波和CAM的结合进行复杂背景的跟踪
最新推荐文章于 2024-05-13 18:21:41 发布