java的spring AOP之深入理解

前言

AOP,也就是面向切面编程,它可以将公共的代码抽离出来,动态的织入到目标类、目标方法中,大大提高我们编程的效率,也使程序变得更加优雅。如事务、操作日志等都可以使用AOP实现。这种织入可以是在运行期动态生成代理对象实现,也可以在编译期类加载时期静态织入到代码中。而Spring正是通过第一种方法实现,且在代理类的生成上也有两种方式:JDK Proxy和CGLIB,默认当类实现了接口时使用前者,否则使用后者;另外Spring AOP只能实现对方法的增强。

正文

基本概念

AOP的术语很多,虽然不清楚术语我们也能很熟练地使用AOP,但是要理解分析源码,术语就需要深刻体会其含义。

  • 增强(Advice):就是我们想要额外增加的功能
  • 目标对象(Target):就是我们想要增强的目标类,如果没有AOP,我们需要在每个目标对象中实现日志、事务管理等非业务逻辑
  • 连接点(JoinPoint):程序执行时的特定时机,如方法执行前、后以及抛出异常后等等。
  • 切点(Pointcut):连接点的导航,我们如何找到目标对象呢?切点的作用就在于此,在Spring中就是匹配表达式。
  • 引介(Introduction):引介是一种特殊的增强,它为类添加一些属性和方法。这样,即使一个业务类原本没有实现某个接口,通过AOP的引介功能,我们可以动态地为该业务类添加接口的实现逻辑,让业务类成为这个接口的实现类。
  • 织入(Weaving):即如何将增强添加到目标对象的连接点上,有动态(运行期生成代理)、静态(编译期、类加载时期)两种方式。
  • 代理(Proxy):目标对象被织入增强后,就会产生一个代理对象,该对象可能是和原对象实现了同样的一个接口(JDK),也可能是原对象的子类(CGLIB)。
  • 切面(Aspect、Advisor):切面由切点和增强组成,包含了这两者的定义。

代理对象的创建

在熟悉了AOP术语后,下面就来看看Spring是如何创建代理对象的,是否还记得上一篇提到的AOP的入口呢?在AbstractAutowireCapableBeanFactory类的applyBeanPostProcessorsAfterInitialization方法中循环调用了BeanPostProcessorpostProcessAfterInitialization方法,其中一个就是我们创建代理对象的入口。这里是Bean实例化完成去创建代理对象,理所当然应该这样,但实际上在Bean实例化之前调用了一个resolveBeforeInstantiation方法,这里实际上我们也是有机会可以提前创建代理对象的,这里放到最后来分析,先来看主入口,进入到AbstractAutoProxyCreator类中:

public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) {

if (bean != null) {

Object cacheKey = getCacheKey(bean.getClass(), beanName);

if (!this.earlyProxyReferences.contains(cacheKey)) {

return wrapIfNecessary(bean, beanName, cacheKey);

}

}

return bean;

}



protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) {

//创建当前bean的代理,如果这个bean有advice的话,重点看

// Create proxy if we have advice.

Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null);

//如果有切面,则生成该bean的代理

if (specificInterceptors != DO_NOT_PROXY) {

this.advisedBeans.put(cacheKey, Boolean.TRUE);

//把被代理对象bean实例封装到SingletonTargetSource对象中

Object proxy = createProxy(

bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean));

this.proxyTypes.put(cacheKey, proxy.getClass());

return proxy;

}



this.advisedBeans.put(cacheKey, Boolean.FALSE);

return bean;

}

先从缓存中拿,没有则调用wrapIfNecessary方法创建。在这个方法里面主要看两个地方:getAdvicesAndAdvisorsForBeancreateProxy。简单一句话概括就是先扫描后创建,问题是扫描什么呢?你可以先结合上面的概念思考下,换你会怎么做。进入到子类AbstractAdvisorAutoProxyCreatorgetAdvicesAndAdvisorsForBean方法中:

protected Object[] getAdvicesAndAdvisorsForBean(

Class<?> beanClass, String beanName, @Nullable TargetSource targetSource) {



//找到合格的切面

List<Advisor> advisors = findEligibleAdvisors(beanClass, beanName);

if (advisors.isEmpty()) {

return DO_NOT_PROXY;

}

return advisors.toArray();

}



protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) {

//找到候选的切面,其实就是一个寻找有@Aspectj注解的过程,把工程中所有有这个注解的类封装成Advisor返回

List<Advisor> candidateAdvisors = findCandidateAdvisors();



//判断候选的切面是否作用在当前beanClass上面,就是一个匹配过程。现在就是一个匹配

List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName);

extendAdvisors(eligibleAdvisors);

if (!eligibleAdvisors.isEmpty()) {

//对有@Order@Priority进行排序

eligibleAdvisors = sortAdvisors(eligibleAdvisors);

}

return eligibleAdvisors;

}

findEligibleAdvisors方法中可以看到有两个步骤,第一先找到所有的切面,即扫描所有带有@Aspect注解的类,并将其中的切点(表达式)增强封装为切面,扫描完成后,自然是要判断哪些切面能够连接到当前Bean实例上。下面一步步来分析,首先是扫描过程,进入到AnnotationAwareAspectJAutoProxyCreator类中:

protected List<Advisor> findCandidateAdvisors() {

// 先通过父类AbstractAdvisorAutoProxyCreator扫描,这里不重要

List<Advisor> advisors = super.findCandidateAdvisors();

// 主要看这里

if (this.aspectJAdvisorsBuilder != null) {

advisors.addAll(this.aspectJAdvisorsBuilder.buildAspectJAdvisors());

}

return advisors;

}

这里委托给了BeanFactoryAspectJAdvisorsBuilderAdapter类,并调用其父类的buildAspectJAdvisors方法创建切面对象:

public List<Advisor> buildAspectJAdvisors() {

List<String> aspectNames = this.aspectBeanNames;



if (aspectNames == null) {

synchronized (this) {

aspectNames = this.aspectBeanNames;

if (aspectNames == null) {

List<Advisor> advisors = new ArrayList<>();

aspectNames = new ArrayList<>();

//获取spring容器中的所有bean的名称BeanName

String[] beanNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors(

this.beanFactory, Object.class, true, false);

for (String beanName : beanNames) {

if (!isEligibleBean(beanName)) {

continue;

}

Class<?> beanType = this.beanFactory.getType(beanName);

if (beanType == null) {

continue;

}

//判断类上是否有@Aspect注解

if (this.advisorFactory.isAspect(beanType)) {

aspectNames.add(beanName);

AspectMetadata amd = new AspectMetadata(beanType, beanName);

if (amd.getAjType().getPerClause().getKind() == PerClauseKind.SINGLETON) {

// 当@Aspect的value属性为""时才会进入到这里

// 创建获取有@Aspect注解类的实例工厂,负责获取有@Aspect注解类的实例

MetadataAwareAspectInstanceFactory factory =

new BeanFactoryAspectInstanceFactory(this.beanFactory, beanName);



//创建切面advisor对象

List<Advisor> classAdvisors = this.advisorFactory.getAdvisors(factory);

if (this.beanFactory.isSingleton(beanName)) {

this.advisorsCache.put(beanName, classAdvisors);

}

else {

this.aspectFactoryCache.put(beanName, factory);

}

advisors.addAll(classAdvisors);

}

else {

MetadataAwareAspectInstanceFactory factory =

new PrototypeAspectInstanceFactory(this.beanFactory, beanName);

this.aspectFactoryCache.put(beanName, factory);

advisors.addAll(this.advisorFactory.getAdvisors(factory));

}

}

}

this.aspectBeanNames = aspectNames;

return advisors;

}

}

}

return advisors;

}

这个方法里面首先从IOC中拿到所有Bean的名称,并循环判断该类上是否带有@Aspect注解,如果有则将BeanName和Bean的Class类型封装到BeanFactoryAspectInstanceFactory中,并调用ReflectiveAspectJAdvisorFactory.getAdvisors创建切面对象:

public List<Advisor> getAdvisors(MetadataAwareAspectInstanceFactory aspectInstanceFactory) {

//从工厂中获取有@Aspect注解的类Class

Class<?> aspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass();

//从工厂中获取有@Aspect注解的类的名称

String aspectName = aspectInstanceFactory.getAspectMetadata().getAspectName();

validate(aspectClass);



// 创建工厂的装饰类,获取实例只会获取一次

MetadataAwareAspectInstanceFactory lazySingletonAspectInstanceFactory =

new LazySingletonAspectInstanceFactoryDecorator(aspectInstanceFactory);



List<Advisor> advisors = new ArrayList<>();



//这里循环没有@Pointcut注解的方法

for (Method method : getAdvisorMethods(aspectClass)) {



//非常重要重点看看

Advisor advisor = getAdvisor(method, lazySingletonAspectInstanceFactory, advisors.size(), aspectName);

if (advisor != null) {

advisors.add(advisor);

}

}



if (!advisors.isEmpty() && lazySingletonAspectInstanceFactory.getAspectMetadata().isLazilyInstantiated()) {

Advisor instantiationAdvisor = new SyntheticInstantiationAdvisor(lazySingletonAspectInstanceFactory);

advisors.add(0, instantiationAdvisor);

}



//判断属性上是否有引介注解,这里可以不看

for (Field field : aspectClass.getDeclaredFields()) {

//判断属性上是否有DeclareParents注解,如果有返回切面

Advisor advisor = getDeclareParentsAdvisor(field);

if (advisor != null) {

advisors.add(advisor);

}

}



return advisors;

}



private List<Method> getAdvisorMethods(Class<?> aspectClass) {

final List<Method> methods = new ArrayList<>();

ReflectionUtils.doWithMethods(aspectClass, method -> {

// Exclude pointcuts

if (AnnotationUtils.getAnnotation(method, Pointcut.class) == null) {

methods.add(method);

}

});

methods.sort(METHOD_COMPARATOR);

return methods;

}

根据Aspect的Class拿到所有不带@Pointcut注解的方法对象(为什么是不带@Pointcut注解的方法?仔细想想不难理解),另外要注意这里对method进行了排序,看看这个METHOD_COMPARATOR比较器:

private static final Comparator<Method> METHOD_COMPARATOR;



static {

Comparator<Method> adviceKindComparator = new ConvertingComparator<>(

new InstanceComparator<>(

Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class),

(Converter<Method, Annotation>) method -> {

AspectJAnnotation<?> annotation =

AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(method);

return (annotation != null ? annotation.getAnnotation() : null);

});

Comparator<Method> methodNameComparator = new ConvertingComparator<>(Method::getName);

METHOD_COMPARATOR = adviceKindComparator.thenComparing(methodNameComparator);

}

关注InstanceComparator构造函数参数,记住它们的顺序,这就是AOP链式调用中同一个@Aspect类中Advice的执行顺序。接着往下看,在getAdvisors方法中循环获取到的methods,分别调用getAdvisor方法,也就是根据方法逐个去创建切面:

public Advisor getAdvisor(Method candidateAdviceMethod, MetadataAwareAspectInstanceFactory aspectInstanceFactory,

int declarationOrderInAspect, String aspectName) {



validate(aspectInstanceFactory.getAspectMetadata().getAspectClass());



//获取pointCut对象,最重要的是从注解中获取表达式

AspectJExpressionPointcut expressionPointcut = getPointcut(

candidateAdviceMethod, aspectInstanceFactory.getAspectMetadata().getAspectClass());

if (expressionPointcut == null) {

return null;

}



//创建Advisor切面类,这才是真正的切面类,一个切面类里面肯定要有1、pointCut 2、advice

//这里pointCut是expressionPointcut, advice 增强方法是 candidateAdviceMethod

return new InstantiationModelAwarePointcutAdvisorImpl(expressionPointcut, candidateAdviceMethod,

this, aspectInstanceFactory, declarationOrderInAspect, aspectName);

}



private static final Class<?>[] ASPECTJ_ANNOTATION_CLASSES = new Class<?>[] {

Pointcut.class, Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class};



private AspectJExpressionPointcut getPointcut(Method candidateAdviceMethod, Class<?> candidateAspectClass) {

//从候选的增强方法里面 candidateAdviceMethod  找有有注解

//Pointcut.class, Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class

//并把注解信息封装成AspectJAnnotation对象

AspectJAnnotation<?> aspectJAnnotation =

AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod);

if (aspectJAnnotation == null) {

return null;

}



//创建一个PointCut类,并且把前面从注解里面解析的表达式设置进去

AspectJExpressionPointcut ajexp =

new AspectJExpressionPointcut(candidateAspectClass, new String[0], new Class<?>[0]);

ajexp.setExpression(aspectJAnnotation.getPointcutExpression());

if (this.beanFactory != null) {

ajexp.setBeanFactory(this.beanFactory);

}

return ajexp;

}

之前就说过切面的定义,是切点和增强的组合,所以这里首先通过getPointcut获取到注解对象,然后new了一个Pointcut对象,并将表达式设置进去。然后在getAdvisor方法中最后new了一个InstantiationModelAwarePointcutAdvisorImpl对象:

public InstantiationModelAwarePointcutAdvisorImpl(AspectJExpressionPointcut declaredPointcut,

Method aspectJAdviceMethod, AspectJAdvisorFactory aspectJAdvisorFactory,

MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrder, String aspectName) {



this.declaredPointcut = declaredPointcut;

this.declaringClass = aspectJAdviceMethod.getDeclaringClass();

this.methodName = aspectJAdviceMethod.getName();

this.parameterTypes = aspectJAdviceMethod.getParameterTypes();

this.aspectJAdviceMethod = aspectJAdviceMethod;

this.aspectJAdvisorFactory = aspectJAdvisorFactory;

this.aspectInstanceFactory = aspectInstanceFactory;

this.declarationOrder = declarationOrder;

this.aspectName = aspectName;



if (aspectInstanceFactory.getAspectMetadata().isLazilyInstantiated()) {

// Static part of the pointcut is a lazy type.

Pointcut preInstantiationPointcut = Pointcuts.union(

aspectInstanceFactory.getAspectMetadata().getPerClausePointcut(), this.declaredPointcut);



// Make it dynamic: must mutate from pre-instantiation to post-instantiation state.

// If it's not a dynamic pointcut, it may be optimized out

// by the Spring AOP infrastructure after the first evaluation.

this.pointcut = new PerTargetInstantiationModelPointcut(

this.declaredPointcut, preInstantiationPointcut, aspectInstanceFactory);

this.lazy = true;

}

else {

// A singleton aspect.

this.pointcut = this.declaredPointcut;

this.lazy = false;

//这个方法重点看看,创建advice对象

this.instantiatedAdvice = instantiateAdvice(this.declaredPointcut);

}

}

这个就是我们的切面类,在其构造方法的最后通过instantiateAdvice创建了Advice对象。注意这里传进来的declarationOrder参数,它就是循环method时的序号,其作用就是赋值给这里的declarationOrder属性以及Advice的declarationOrder属性,在后面排序时就会通过这个序号来比较,因此Advice的执行顺序是固定的,至于为什么要固定,后面分析完AOP链式调用过程自然就明白了。

public Advice getAdvice(Method candidateAdviceMethod, AspectJExpressionPointcut expressionPointcut,

MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrder, String aspectName) {



//获取有@Aspect注解的类

Class<?> candidateAspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass();

validate(candidateAspectClass);



//找到candidateAdviceMethod方法上面的注解,并且包装成AspectJAnnotation对象,这个对象中就有注解类型

AspectJAnnotation<?> aspectJAnnotation =

AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod);

if (aspectJAnnotation == null) {

return null;

}



AbstractAspectJAdvice springAdvice;



//根据不同的注解类型创建不同的advice类实例

switch (aspectJAnnotation.getAnnotationType()) {

case AtPointcut:

if (logger.isDebugEnabled()) {

logger.debug("Processing pointcut '" + candidateAdviceMethod.getName() + "'");

}

return null;

case AtAround:

//实现了MethodInterceptor接口

springAdvice = new AspectJAroundAdvice(

candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);

break;

case AtBefore:

//实现了MethodBeforeAdvice接口,没有实现MethodInterceptor接口

springAdvice = new AspectJMethodBeforeAdvice(

candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);

break;

case AtAfter:

//实现了MethodInterceptor接口

springAdvice = new AspectJAfterAdvice(

candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);

break;

case AtAfterReturning:

//实现了AfterReturningAdvice接口,没有实现MethodInterceptor接口

springAdvice = new AspectJAfterReturningAdvice(

candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);

AfterReturning afterReturningAnnotation = (AfterReturning) aspectJAnnotation.getAnnotation();

if (StringUtils.hasText(afterReturningAnnotation.returning())) {

springAdvice.setReturningName(afterReturningAnnotation.returning());

}

break;

case AtAfterThrowing:

//实现了MethodInterceptor接口

springAdvice = new AspectJAfterThrowingAdvice(

candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);

AfterThrowing afterThrowingAnnotation = (AfterThrowing) aspectJAnnotation.getAnnotation();

if (StringUtils.hasText(afterThrowingAnnotation.throwing())) {

springAdvice.setThrowingName(afterThrowingAnnotation.throwing());

}

break;

default:

throw new UnsupportedOperationException(

"Unsupported advice type on method: " + candidateAdviceMethod);

}



// Now to configure the advice...

springAdvice.setAspectName(aspectName);

springAdvice.setDeclarationOrder(declarationOrder);

String[] argNames = this.parameterNameDiscoverer.getParameterNames(candidateAdviceMethod);

if (argNames != null) {

springAdvice.setArgumentNamesFromStringArray(argNames);

}



//计算argNames和类型的对应关系

springAdvice.calculateArgumentBindings();



return springAdvice;

}

这里逻辑很清晰,就是拿到方法上的注解类型,根据类型创建不同的增强Advice对象:AspectJAroundAdvice、AspectJMethodBeforeAdvice、AspectJAfterAdvice、AspectJAfterReturningAdvice、AspectJAfterThrowingAdvice。完成之后通过calculateArgumentBindings方法进行参数绑定,感兴趣的可自行研究。这里主要看看几个Advice的继承体系:
 


可以看到有两个Advice是没有实现MethodInterceptor接口的:AspectJMethodBeforeAdvice和AspectJAfterReturningAdvice。而MethodInterceptor有一个invoke方法,这个方法就是链式调用的核心方法,但那两个没有实现该方法的Advice怎么处理呢?稍后会分析。
到这里切面对象就创建完成了,接下来就是判断当前创建的Bean实例是否和这些切面匹配以及对切面排序。匹配过程比较复杂,对理解主流程也没什么帮助,所以这里就不展开分析,感兴趣的自行分析(AbstractAdvisorAutoProxyCreator.findAdvisorsThatCanApply())。下面看看排序的过程,回到AbstractAdvisorAutoProxyCreator.findEligibleAdvisors方法:

protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) {

//找到候选的切面,其实就是一个寻找有@Aspectj注解的过程,把工程中所有有这个注解的类封装成Advisor返回

List<Advisor> candidateAdvisors = findCandidateAdvisors();



//判断候选的切面是否作用在当前beanClass上面,就是一个匹配过程。现在就是一个匹配

List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName);

extendAdvisors(eligibleAdvisors);

if (!eligibleAdvisors.isEmpty()) {

//对有@Order@Priority进行排序

eligibleAdvisors = sortAdvisors(eligibleAdvisors);

}

return eligibleAdvisors;

}

sortAdvisors方法就是排序,但这个方法有两个实现:当前类AbstractAdvisorAutoProxyCreator和子类AspectJAwareAdvisorAutoProxyCreator,应该走哪个呢?
 


通过类图我们可以肯定是进入的AspectJAwareAdvisorAutoProxyCreator类,因为AnnotationAwareAspectJAutoProxyCreator的父类是它。

protected List<Advisor> sortAdvisors(List<Advisor> advisors) {

List<PartiallyComparableAdvisorHolder> partiallyComparableAdvisors = new ArrayList<>(advisors.size());

for (Advisor element : advisors) {

partiallyComparableAdvisors.add(

new PartiallyComparableAdvisorHolder(element, DEFAULT_PRECEDENCE_COMPARATOR));

}

List<PartiallyComparableAdvisorHolder> sorted = PartialOrder.sort(partiallyComparableAdvisors);

if (sorted != null) {

List<Advisor> result = new ArrayList<>(advisors.size());

for (PartiallyComparableAdvisorHolder pcAdvisor : sorted) {

result.add(pcAdvisor.getAdvisor());

}

return result;

}

else {

return super.sortAdvisors(advisors);

}

}

这里排序主要是委托给PartialOrder进行的,而在此之前将所有的切面都封装成了PartiallyComparableAdvisorHolder对象,注意传入的DEFAULT_PRECEDENCE_COMPARATOR参数,这个就是比较器对象:

private static final Comparator<Advisor> DEFAULT_PRECEDENCE_COMPARATOR = new AspectJPrecedenceComparator();

所以我们直接看这个比较器的compare方法:

public int compare(Advisor o1, Advisor o2) {

int advisorPrecedence = this.advisorComparator.compare(o1, o2);

if (advisorPrecedence == SAME_PRECEDENCE && declaredInSameAspect(o1, o2)) {

advisorPrecedence = comparePrecedenceWithinAspect(o1, o2);

}

return advisorPrecedence;

}



private final Comparator<? super Advisor> advisorComparator;

public AspectJPrecedenceComparator() {

this.advisorComparator = AnnotationAwareOrderComparator.INSTANCE;

}

第一步先通过AnnotationAwareOrderComparator去比较,点进去看可以发现是对实现了PriorityOrderedOrdered接口以及标记了PriorityOrder注解的非同一个@Aspect类中的切面进行排序。这个和之前分析BeanFacotryPostProcessor类是一样的原理。而对同一个@Aspect类中的切面排序主要是comparePrecedenceWithinAspect方法:

private int comparePrecedenceWithinAspect(Advisor advisor1, Advisor advisor2) {

boolean oneOrOtherIsAfterAdvice =

(AspectJAopUtils.isAfterAdvice(advisor1) || AspectJAopUtils.isAfterAdvice(advisor2));

int adviceDeclarationOrderDelta = getAspectDeclarationOrder(advisor1) - getAspectDeclarationOrder(advisor2);



if (oneOrOtherIsAfterAdvice) {

// the advice declared last has higher precedence

if (adviceDeclarationOrderDelta < 0) {

// advice1 was declared before advice2

// so advice1 has lower precedence

return LOWER_PRECEDENCE;

}

else if (adviceDeclarationOrderDelta == 0) {

return SAME_PRECEDENCE;

}

else {

return HIGHER_PRECEDENCE;

}

}

else {

// the advice declared first has higher precedence

if (adviceDeclarationOrderDelta < 0) {

// advice1 was declared before advice2

// so advice1 has higher precedence

return HIGHER_PRECEDENCE;

}

else if (adviceDeclarationOrderDelta == 0) {

return SAME_PRECEDENCE;

}

else {

return LOWER_PRECEDENCE;

}

}

}



private int getAspectDeclarationOrder(Advisor anAdvisor) {

AspectJPrecedenceInformation precedenceInfo =

AspectJAopUtils.getAspectJPrecedenceInformationFor(anAdvisor);

if (precedenceInfo != null) {

return precedenceInfo.getDeclarationOrder();

}

else {

return 0;

}

}

这里就是通过precedenceInfo.getDeclarationOrder拿到在创建InstantiationModelAwarePointcutAdvisorImpl对象时设置的declarationOrder属性,这就验证了之前的说法(实际上这里排序过程非常复杂,不是简单的按照这个属性进行排序)。
当上面的一切都进行完成后,就该创建代理对象了,回到AbstractAutoProxyCreator.wrapIfNecessary,看关键部分代码:

//如果有切面,则生成该bean的代理

if (specificInterceptors != DO_NOT_PROXY) {

this.advisedBeans.put(cacheKey, Boolean.TRUE);

//把被代理对象bean实例封装到SingletonTargetSource对象中

Object proxy = createProxy(

bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean));

this.proxyTypes.put(cacheKey, proxy.getClass());

return proxy;

}

注意这里将被代理对象封装成了一个SingletonTargetSource对象,它是TargetSource的实现类。

protected Object createProxy(Class<?> beanClass, @Nullable String beanName,

@Nullable Object[] specificInterceptors, TargetSource targetSource) {



if (this.beanFactory instanceof ConfigurableListableBeanFactory) {

AutoProxyUtils.exposeTargetClass((ConfigurableListableBeanFactory) this.beanFactory, beanName, beanClass);

}



//创建代理工厂

ProxyFactory proxyFactory = new ProxyFactory();

proxyFactory.copyFrom(this);



if (!proxyFactory.isProxyTargetClass()) {

if (shouldProxyTargetClass(beanClass, beanName)) {

//proxyTargetClass 是否对类进行代理,而不是对接口进行代理,设置为true时,使用CGLib代理。

proxyFactory.setProxyTargetClass(true);

}

else {

evaluateProxyInterfaces(beanClass, proxyFactory);

}

}



//把advice类型的增强包装成advisor切面

Advisor[] advisors = buildAdvisors(beanName, specificInterceptors);

proxyFactory.addAdvisors(advisors);

proxyFactory.setTargetSource(targetSource);

customizeProxyFactory(proxyFactory);



用来控制代理工厂被配置后,是否还允许修改代理的配置,默认为false

proxyFactory.setFrozen(this.freezeProxy);

if (advisorsPreFiltered()) {

proxyFactory.setPreFiltered(true);

}



//获取代理实例

return proxyFactory.getProxy(getProxyClassLoader());

}

这里通过ProxyFactory对象去创建代理实例,这是工厂模式的体现,但在创建代理对象之前还有几个准备动作:需要判断是JDK代理还是CGLIB代理以及通过buildAdvisors方法将扩展的Advice封装成Advisor切面。准备完成则通过getProxy创建代理对象:

public Object getProxy(@Nullable ClassLoader classLoader) {

//根据目标对象是否有接口来判断采用什么代理方式,cglib代理还是jdk动态代理

return createAopProxy().getProxy(classLoader);

}



protected final synchronized AopProxy createAopProxy() {

if (!this.active) {

activate();

}

return getAopProxyFactory().createAopProxy(this);

}



public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException {

if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) {

Class<?> targetClass = config.getTargetClass();

if (targetClass == null) {

throw new AopConfigException("TargetSource cannot determine target class: " +

"Either an interface or a target is required for proxy creation.");

}

if (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) {

return new JdkDynamicAopProxy(config);

}

return new ObjenesisCglibAopProxy(config);

}

else {

return new JdkDynamicAopProxy(config);

}

}

首先通过配置拿到对应的代理类:ObjenesisCglibAopProxy和JdkDynamicAopProxy,然后再通过getProxy创建Bean的代理,这里以JdkDynamicAopProxy为例:

public Object getProxy(@Nullable ClassLoader classLoader) {

//advised是代理工厂对象

Class<?>[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised, true);

findDefinedEqualsAndHashCodeMethods(proxiedInterfaces);

return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);

}

这里的代码你应该不陌生了,就是JDK的原生API,newProxyInstance方法传入的InvocationHandler对象是this,因此,最终AOP代理的调用就是从该类中的invoke方法开始。至此,代理对象的创建就完成了,下面来看下整个过程的时序图:

小结

代理对象的创建过程整体来说并不复杂,首先找到所有带有@Aspect注解的类,并获取其中没有@Pointcut注解的方法,循环创建切面,而创建切面需要切点增强两个元素,其中切点可简单理解为我们写的表达式,增强则是根据@Before、@Around、@After等注解创建的对应的Advice类。切面创建好后则需要循环判断哪些切面能对当前的Bean实例的方法进行增强并排序,最后通过ProxyFactory创建代理对象。

AOP链式调用

熟悉JDK动态代理的都知道通过代理对象调用方法时,会进入到InvocationHandler对象的invoke方法,所以我们直接从JdkDynamicAopProxy的这个方法开始:

public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

MethodInvocation invocation;

Object oldProxy = null;

boolean setProxyContext = false;



//从代理工厂中拿到TargetSource对象,该对象包装了被代理实例bean

TargetSource targetSource = this.advised.targetSource;

Object target = null;



try {

//被代理对象的equals方法和hashCode方法是不能被代理的,不会走切面

.......



Object retVal;



// 可以从当前线程中拿到代理对象

if (this.advised.exposeProxy) {

// Make invocation available if necessary.

oldProxy = AopContext.setCurrentProxy(proxy);

setProxyContext = true;

}



//这个target就是被代理实例

target = targetSource.getTarget();

Class<?> targetClass = (target != null ? target.getClass() : null);



//从代理工厂中拿过滤器链 Object是一个MethodInterceptor类型的对象,其实就是一个advice对象

List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);



//如果该方法没有执行链,则说明这个方法不需要被拦截,则直接反射调用

if (chain.isEmpty()) {

Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);

retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);

}

else {

invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);

retVal = invocation.proceed();

}



// Massage return value if necessary.

Class<?> returnType = method.getReturnType();

if (retVal != null && retVal == target &&

returnType != Object.class && returnType.isInstance(proxy) &&

!RawTargetAccess.class.isAssignableFrom(method.getDeclaringClass())) {

retVal = proxy;

}

return retVal;

}

finally {

if (target != null && !targetSource.isStatic()) {

// Must have come from TargetSource.

targetSource.releaseTarget(target);

}

if (setProxyContext) {

// Restore old proxy.

AopContext.setCurrentProxy(oldProxy);

}

}

}

这段代码比较长,我删掉了不关键的地方。首先来看this.advised.exposeProxy这个属性,这在@EnableAspectJAutoProxy注解中可以配置,当为true时,会将该代理对象设置到当前线程的ThreadLocal对象中,这样就可以通过AopContext.currentProxy拿到代理对象。这个有什么用呢?我相信有经验的Java开发都遇到过这样一个BUG,在Service实现类中调用本类中的另一个方法时,事务不会生效,这是因为直接通过this调用就不会调用到代理对象的方法,而是原对象的,所以事务切面就没有生效。因此这种情况下就可以从当前线程的ThreadLocal对象拿到代理对象,不过实际上直接使用@Autowired注入自己本身也可以拿到代理对象。
接下来就是通过getInterceptorsAndDynamicInterceptionAdvice拿到执行链,看看具体做了哪些事情:

public List<Object> getInterceptorsAndDynamicInterceptionAdvice(

Advised config, Method method, @Nullable Class<?> targetClass) {



AdvisorAdapterRegistry registry = GlobalAdvisorAdapterRegistry.getInstance();

//从代理工厂中获得该被代理类的所有切面advisor,config就是代理工厂对象

Advisor[] advisors = config.getAdvisors();

List<Object> interceptorList = new ArrayList<>(advisors.length);

Class<?> actualClass = (targetClass != null ? targetClass : method.getDeclaringClass());

Boolean hasIntroductions = null;



for (Advisor advisor : advisors) {

//大部分走这里

if (advisor instanceof PointcutAdvisor) {

// Add it conditionally.

PointcutAdvisor pointcutAdvisor = (PointcutAdvisor) advisor;

//如果切面的pointCut和被代理对象是匹配的,说明是切面要拦截的对象

if (config.isPreFiltered() || pointcutAdvisor.getPointcut().getClassFilter().matches(actualClass)) {

MethodMatcher mm = pointcutAdvisor.getPointcut().getMethodMatcher();

boolean match;

if (mm instanceof IntroductionAwareMethodMatcher) {

if (hasIntroductions == null) {

hasIntroductions = hasMatchingIntroductions(advisors, actualClass);

}

match = ((IntroductionAwareMethodMatcher) mm).matches(method, actualClass, hasIntroductions);

}

else {

//接下来判断方法是否是切面pointcut需要拦截的方法

match = mm.matches(method, actualClass);

}

//如果类和方法都匹配

if (match) {



//获取到切面advisor中的advice,并且包装成MethodInterceptor类型的对象

MethodInterceptor[] interceptors = registry.getInterceptors(advisor);

if (mm.isRuntime()) {

for (MethodInterceptor interceptor : interceptors) {

interceptorList.add(new InterceptorAndDynamicMethodMatcher(interceptor, mm));

}

}

else {

interceptorList.addAll(Arrays.asList(interceptors));

}

}

}

}

//如果是引介切面

else if (advisor instanceof IntroductionAdvisor) {

IntroductionAdvisor ia = (IntroductionAdvisor) advisor;

if (config.isPreFiltered() || ia.getClassFilter().matches(actualClass)) {

Interceptor[] interceptors = registry.getInterceptors(advisor);

interceptorList.addAll(Arrays.asList(interceptors));

}

}

else {

Interceptor[] interceptors = registry.getInterceptors(advisor);

interceptorList.addAll(Arrays.asList(interceptors));

}

}



return interceptorList;

}

这也是个长方法,看关键的部分,因为之前我们创建的基本上都是InstantiationModelAwarePointcutAdvisorImpl对象,该类是PointcutAdvisor的实现类,所以会进入第一个if判断里,这里首先进行匹配,看切点当前对象以及该对象的哪些方法匹配,如果能匹配上,则调用getInterceptors获取执行链:

private final List<AdvisorAdapter> adapters = new ArrayList<>(3);

public DefaultAdvisorAdapterRegistry() {

registerAdvisorAdapter(new MethodBeforeAdviceAdapter());

registerAdvisorAdapter(new AfterReturningAdviceAdapter());

registerAdvisorAdapter(new ThrowsAdviceAdapter());

}



public MethodInterceptor[] getInterceptors(Advisor advisor) throws UnknownAdviceTypeException {

List<MethodInterceptor> interceptors = new ArrayList<>(3);

Advice advice = advisor.getAdvice();

//如果是MethodInterceptor类型的,如:AspectJAroundAdvice

//AspectJAfterAdvice

//AspectJAfterThrowingAdvice

if (advice instanceof MethodInterceptor) {

interceptors.add((MethodInterceptor) advice);

}



//处理 AspectJMethodBeforeAdvice  AspectJAfterReturningAdvice

for (AdvisorAdapter adapter : this.adapters) {

if (adapter.supportsAdvice(advice)) {

interceptors.add(adapter.getInterceptor(advisor));

}

}

if (interceptors.isEmpty()) {

throw new UnknownAdviceTypeException(advisor.getAdvice());

}

return interceptors.toArray(new MethodInterceptor[0]);

}

这里我们可以看到如果是MethodInterceptor的实现类,则直接添加到链中,如果不是,则需要通过适配器去包装后添加,刚好这里有MethodBeforeAdviceAdapterAfterReturningAdviceAdapter两个适配器对应上文两个没有实现MethodInterceptor接口的类。最后将Interceptors返回。

if (chain.isEmpty()) {

Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);

retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);

}else {

// We need to create a method invocation...

invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);

// Proceed to the joinpoint through the interceptor chain.

retVal = invocation.proceed();

}

返回到invoke方法后,如果执行链为空,说明该方法不需要被增强,所以直接反射调用原对象的方法(注意传入的是TargetSource封装的被代理对象);反之,则通过ReflectiveMethodInvocation类进行链式调用,关键方法就是proceed

private int currentInterceptorIndex = -1;



public Object proceed() throws Throwable {

//如果执行链中的advice全部执行完,则直接调用joinPoint方法,就是被代理方法

if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size() - 1) {

return invokeJoinpoint();

}



Object interceptorOrInterceptionAdvice =

this.interceptorsAndDynamicMethodMatchers.get(++this.currentInterceptorIndex);

if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {

InterceptorAndDynamicMethodMatcher dm =

(InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;

Class<?> targetClass = (this.targetClass != null ? this.targetClass : this.method.getDeclaringClass());

if (dm.methodMatcher.matches(this.method, targetClass, this.arguments)) {

return dm.interceptor.invoke(this);

}

else {

return proceed();

}

}

else {

//调用MethodInterceptor中的invoke方法

return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);

}

}

这个方法的核心就在两个地方:invokeJoinpointinterceptorOrInterceptionAdvice.invoke(this)。当增强方法调用完后就会通过前者调用到被代理的方法,否则则是依次调用Interceptorinvoke方法。下面就分别看看每个Interceptor是怎么实现的。

  • AspectJAroundAdvice

public Object invoke(MethodInvocation mi) throws Throwable {

if (!(mi instanceof ProxyMethodInvocation)) {

throw new IllegalStateException("MethodInvocation is not a Spring ProxyMethodInvocation: " + mi);

}

ProxyMethodInvocation pmi = (ProxyMethodInvocation) mi;

ProceedingJoinPoint pjp = lazyGetProceedingJoinPoint(pmi);

JoinPointMatch jpm = getJoinPointMatch(pmi);

return invokeAdviceMethod(pjp, jpm, null, null);

}

  • MethodBeforeAdviceInterceptor -> AspectJMethodBeforeAdvice

public Object invoke(MethodInvocation mi) throws Throwable {

this.advice.before(mi.getMethod(), mi.getArguments(), mi.getThis());

return mi.proceed();

}

public void before(Method method, Object[] args, @Nullable Object target) throws Throwable {

invokeAdviceMethod(getJoinPointMatch(), null, null);

}

  • AspectJAfterAdvice

public Object invoke(MethodInvocation mi) throws Throwable {

try {

return mi.proceed();

}

finally {

invokeAdviceMethod(getJoinPointMatch(), null, null);

}

}

  • AfterReturningAdviceInterceptor -> AspectJAfterReturningAdvice

public Object invoke(MethodInvocation mi) throws Throwable {

Object retVal = mi.proceed();

this.advice.afterReturning(retVal, mi.getMethod(), mi.getArguments(), mi.getThis());

return retVal;

}

public void afterReturning(@Nullable Object returnValue, Method method, Object[] args, @Nullable Object target) throws Throwable {

if (shouldInvokeOnReturnValueOf(method, returnValue)) {

invokeAdviceMethod(getJoinPointMatch(), returnValue, null);

}

}

  • AspectJAfterThrowingAdvice

public Object invoke(MethodInvocation mi) throws Throwable {

try {

return mi.proceed();

}

catch (Throwable ex) {

if (shouldInvokeOnThrowing(ex)) {

invokeAdviceMethod(getJoinPointMatch(), null, ex);

}

throw ex;

}

}

这里的调用顺序是怎样的呢?其核心就是通过proceed方法控制流程,每执行完一个Advice就会回到proceed方法中调用下一个Advice。可以思考一下,怎么才能让调用结果满足如下图的执行顺序(注意图中所示只是最终执行顺序,而非实际调用顺序,为满足下图顺序,AOP的调用过程需要满足“先进后出,后进先出”)。

以上就是AOP的执行顺序,但是这只是只有一个切面类的情况,如果有多个@Aspect类呢,这个调用过程又是怎样的?

AOP扩展知识

一、自定义全局拦截器Interceptor

在上文创建代理对象的时候有这样一个方法:

protected Advisor[] buildAdvisors(@Nullable String beanName, @Nullable Object[] specificInterceptors) {

//自定义MethodInterceptor.拿到setInterceptorNames方法注入的Interceptor对象

Advisor[] commonInterceptors = resolveInterceptorNames();

List<Object> allInterceptors = new ArrayList<>();

if (specificInterceptors != null) {

allInterceptors.addAll(Arrays.asList(specificInterceptors));

if (commonInterceptors.length > 0) {

if (this.applyCommonInterceptorsFirst) {

allInterceptors.addAll(0, Arrays.asList(commonInterceptors));

}

else {

allInterceptors.addAll(Arrays.asList(commonInterceptors));

}

}

}

Advisor[] advisors = new Advisor[allInterceptors.size()];

for (int i = 0; i < allInterceptors.size(); i++) {

//对自定义的advice要进行包装,把advice包装成advisor对象,切面对象

advisors[i] = this.advisorAdapterRegistry.wrap(allInterceptors.get(i));

}

return advisors;

}

这个方法的作用就在于我们可以扩展我们自己的Interceptor,首先通过resolveInterceptorNames方法获取到通过setInterceptorNames方法设置的Interceptor,然后调用DefaultAdvisorAdapterRegistry.wrap方法将其包装为DefaultPointcutAdvisor对象并返回:

public Advisor wrap(Object adviceObject) throws UnknownAdviceTypeException {

if (adviceObject instanceof Advisor) {

return (Advisor) adviceObject;

}

if (!(adviceObject instanceof Advice)) {

throw new UnknownAdviceTypeException(adviceObject);

}

Advice advice = (Advice) adviceObject;

if (advice instanceof MethodInterceptor) {

return new DefaultPointcutAdvisor(advice);

}

for (AdvisorAdapter adapter : this.adapters) {

if (adapter.supportsAdvice(advice)) {

return new DefaultPointcutAdvisor(advice);

}

}

throw new UnknownAdviceTypeException(advice);

}

public DefaultPointcutAdvisor(Advice advice) {

this(Pointcut.TRUE, advice);

}

需要注意DefaultPointcutAdvisor构造器里面传入了一个Pointcut.TRUE,表示这种扩展的Interceptor是全局的拦截器。下面来看看如何使用:

public class MyMethodInterceptor implements MethodInterceptor {

    @Override

    public Object invoke(MethodInvocation invocation) throws Throwable {

        System.out.println("自定义拦截器");

        return invocation.proceed();

    }

}

首先写一个类实现MethodInterceptor 接口,在invoke方法中实现我们的拦截逻辑,然后通过下面的方式测试,只要UserService 有AOP拦截就会发现自定义的MyMethodInterceptor也生效了。

    public void costomInterceptorTest() {

        AnnotationAwareAspectJAutoProxyCreator bean = applicationContext.getBean(AnnotationAwareAspectJAutoProxyCreator.class);

        bean.setInterceptorNames("myMethodInterceptor ");

        UserService userService = applicationContext.getBean(UserService.class);

        userService.queryUser("dark");

    }

但是如果换个顺序,像下面这样:

    public void costomInterceptorTest() {

        UserService userService = applicationContext.getBean(UserService.class);

        AnnotationAwareAspectJAutoProxyCreator bean = applicationContext.getBean(AnnotationAwareAspectJAutoProxyCreator.class);

        bean.setInterceptorNames("myMethodInterceptor ");

        userService.queryUser("dark");

    }

这时自定义的全局拦截器就没有作用了,这是为什么呢?因为当执行getBean的时候,如果有切面匹配就会通过ProxyFactory去创建代理对象,注意Interceptor是存到这个Factory对象中的,而这个对象和代理对象是一一对应的,因此调用getBean时,还没有myMethodInterceptor这个对象,自定义拦截器就没有效果了,也就是说要想自定义拦截器生效,就必须在代理对象生成之前注册进去。

二、循环依赖三级缓存存在的必要性

在上一篇文章我分析了Spring是如何通过三级缓存来解决循环依赖的问题的,但你是否考虑过第三级缓存为什么要存在?我直接将bean存到二级不就行了么,为什么还要存一个ObjectFactory对象到第三级缓存中?一个是因为不是每个Bean都会出现循环依赖,所以三级缓存只存了一个工厂对象;二是我们在@Autowired对象时,想要注入的不一定是Bean本身,而是想要注入一个修改过后的对象,如代理对象。在AbstractAutowireCapableBeanFactory.getEarlyBeanReference方法中循环调用了SmartInstantiationAwareBeanPostProcessor.getEarlyBeanReference方法,AbstractAutoProxyCreator对象就实现了该方法:

public Object getEarlyBeanReference(Object bean, String beanName) {

Object cacheKey = getCacheKey(bean.getClass(), beanName);

if (!this.earlyProxyReferences.contains(cacheKey)) {

this.earlyProxyReferences.add(cacheKey);

}

// 创建代理对象

return wrapIfNecessary(bean, beanName, cacheKey);

}

因此,当我们想要对循坏依赖的Bean做出修改时,就可以像AOP这样做。

三、如何在Bean创建之前提前创建代理对象

Spring的代理对象基本上都是在Bean实例化完成之后创建的,但在文章开始我就说过,Spring也提供了一个机会在创建Bean对象之前就创建代理对象,在AbstractAutowireCapableBeanFactory.resolveBeforeInstantiation方法中:

protected Object resolveBeforeInstantiation(String beanName, RootBeanDefinition mbd) {

Object bean = null;

if (!Boolean.FALSE.equals(mbd.beforeInstantiationResolved)) {

// Make sure bean class is actually resolved at this point.

if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {

Class<?> targetType = determineTargetType(beanName, mbd);

if (targetType != null) {

bean = applyBeanPostProcessorsBeforeInstantiation(targetType, beanName);

if (bean != null) {

bean = applyBeanPostProcessorsAfterInitialization(bean, beanName);

}

}

}

mbd.beforeInstantiationResolved = (bean != null);

}

return bean;

}

protected Object applyBeanPostProcessorsBeforeInstantiation(Class<?> beanClass, String beanName) {

for (BeanPostProcessor bp : getBeanPostProcessors()) {

if (bp instanceof InstantiationAwareBeanPostProcessor) {

InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;

Object result = ibp.postProcessBeforeInstantiation(beanClass, beanName);

if (result != null) {

return result;

}

}

}

return null;

}

主要是InstantiationAwareBeanPostProcessor.postProcessBeforeInstantiation方法中,这里又会进入到AbstractAutoProxyCreator类中:

public Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) {

TargetSource targetSource = getCustomTargetSource(beanClass, beanName);

if (targetSource != null) {

if (StringUtils.hasLength(beanName)) {

this.targetSourcedBeans.add(beanName);

}

Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(beanClass, beanName, targetSource);

Object proxy = createProxy(beanClass, beanName, specificInterceptors, targetSource);

this.proxyTypes.put(cacheKey, proxy.getClass());

return proxy;

}

return null;

}

protected TargetSource getCustomTargetSource(Class<?> beanClass, String beanName) {

// We can't create fancy target sources for directly registered singletons.

if (this.customTargetSourceCreators != null &&

this.beanFactory != null && this.beanFactory.containsBean(beanName)) {

for (TargetSourceCreator tsc : this.customTargetSourceCreators) {

TargetSource ts = tsc.getTargetSource(beanClass, beanName);

if (ts != null) {

return ts;

}

}

}

// No custom TargetSource found.

return null;

}

看到这里大致应该明白了,先是获取到一个自定义的TargetSource对象,然后创建代理对象,所以我们首先需要自己实现一个TargetSource类,这里直接继承一个抽象类,getTarget方法则返回原始对象:

public class MyTargetSource extends AbstractBeanFactoryBasedTargetSource {

    @Override

    public Object getTarget() throws Exception {

        return getBeanFactory().getBean(getTargetBeanName());

    }

}

但这还不够,上面首先判断了customTargetSourceCreators!=null,而这个属性是个数组,可以通过下面这个方法设置进来:

public void setCustomTargetSourceCreators(TargetSourceCreator... targetSourceCreators) {

this.customTargetSourceCreators = targetSourceCreators;

}

所以我们还要实现一个TargetSourceCreator类,同样继承一个抽象类实现,并只对userServiceImpl对象进行拦截:

public class MyTargetSourceCreator extends AbstractBeanFactoryBasedTargetSourceCreator {

    @Override

    protected AbstractBeanFactoryBasedTargetSource createBeanFactoryBasedTargetSource(Class<?> beanClass, String beanName) {

        if (getBeanFactory() instanceof ConfigurableListableBeanFactory) {

            if(beanName.equalsIgnoreCase("userServiceImpl")) {

                return new MyTargetSource();

            }

        }

        return null;

    }

}

createBeanFactoryBasedTargetSource方法是在AbstractBeanFactoryBasedTargetSourceCreator.getTargetSource中调用的,而getTargetSource就是在上面getCustomTargetSource中调用的。以上工作做完后,还需要将其设置到AnnotationAwareAspectJAutoProxyCreator对象中,因此需要我们注入这个对象:

@Configurationpublic class TargetSourceCreatorBean {

    @Autowired

    private BeanFactory beanFactory;

   @Bean

    public AnnotationAwareAspectJAutoProxyCreator annotationAwareAspectJAutoProxyCreator() {

        AnnotationAwareAspectJAutoProxyCreator creator = new AnnotationAwareAspectJAutoProxyCreator();

        MyTargetSourceCreator myTargetSourceCreator = new MyTargetSourceCreator();

        myTargetSourceCreator.setBeanFactory(beanFactory);

        creator.setCustomTargetSourceCreators(myTargetSourceCreator);

        return creator;

    }

}

这样,当我们通过getBean获取userServiceImpl的对象时,就会优先生成代理对象,然后在调用执行链的过程中再通过TargetSource.getTarget获取到被代理对象。但是,为什么我们在getTarget方法中调用getBean就能拿到被代理对象呢?
继续探究,通过断点我发现从getTarget进入时,在resolveBeforeInstantiation方法中返回的bean就是null了,而getBeanPostProcessors方法返回的Processors中也没有了AnnotationAwareAspectJAutoProxyCreator对象,也就是没有进入到AbstractAutoProxyCreator.postProcessBeforeInstantiation方法中,所以不会再次获取到代理对象,那AnnotationAwareAspectJAutoProxyCreator对象是在什么时候移除的呢?
带着问题,我开始反推,发现在AbstractBeanFactoryBasedTargetSourceCreator类中有这样一个方法buildInternalBeanFactory

protected DefaultListableBeanFactory buildInternalBeanFactory(ConfigurableBeanFactory containingFactory) {

DefaultListableBeanFactory internalBeanFactory = new DefaultListableBeanFactory(containingFactory);

// Required so that all BeanPostProcessors, Scopes, etc become available.

internalBeanFactory.copyConfigurationFrom(containingFactory);

// Filter out BeanPostProcessors that are part of the AOP infrastructure,

// since those are only meant to apply to beans defined in the original factory.

internalBeanFactory.getBeanPostProcessors().removeIf(beanPostProcessor ->

beanPostProcessor instanceof AopInfrastructureBean);

return internalBeanFactory;

}

在这里移除掉了所有AopInfrastructureBean的子类,而AnnotationAwareAspectJAutoProxyCreator就是其子类,那这个方法是在哪里调用的呢?继续反推:

protected DefaultListableBeanFactory getInternalBeanFactoryForBean(String beanName) {

synchronized (this.internalBeanFactories) {

DefaultListableBeanFactory internalBeanFactory = this.internalBeanFactories.get(beanName);

if (internalBeanFactory == null) {

internalBeanFactory = buildInternalBeanFactory(this.beanFactory);

this.internalBeanFactories.put(beanName, internalBeanFactory);

}

return internalBeanFactory;

}

}

public final TargetSource getTargetSource(Class<?> beanClass, String beanName) {

AbstractBeanFactoryBasedTargetSource targetSource =

createBeanFactoryBasedTargetSource(beanClass, beanName);

// 创建完targetSource后就移除掉AopInfrastructureBean类型的BeanPostProcessor对象,如AnnotationAwareAspectJAutoProxyCreator

DefaultListableBeanFactory internalBeanFactory = getInternalBeanFactoryForBean(beanName);

......

return targetSource;

}

至此,关于TargetSource接口扩展的原理就搞明白了。

总结

本篇篇幅比较长,主要搞明白Spring代理对象是如何创建的以及AOP链式调用过程,而后面的扩展则是对AOP以及Bean创建过程中一些疑惑的补充,可根据实际情况学习掌握。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值