https://blog.youkuaiyun.com/tinyguyyy/article/details/51203935
https://blog.youkuaiyun.com/qq_34374664/article/details/52230368
《背包九讲》https://max.book118.com/html/2017/0615/115637327.shtm
背包问题是典型的DP问题,几乎所有类型的背包问题都可转化为DP运算。
一.01背包
这是最基础的背包问题
特点:每种物品仅有一件,可以选择放或不放。
题目:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
用子问题定义状态:
f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
状态转移方程:f[i][v]=max{ f[i-1][v] , f[i-1][v-c[i]]+w[i] }
将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为j的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
伪代码:
f[0...V]=0
for i=1 to N
for v=V to ci(注意是逆序,以保证所有物品只能选一次)
f[v]=max{ f[v] , f[v-c[i]]+w[i] };
初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。①求“恰好装满背包”时的最优解,②则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
https://www.cnblogs.com/buddho/p/7867920.html
http://blog.sina.com.cn/s/blog_150cffdab0102w0g9.html
①第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。(0x3f3f3f3f表无穷大,0xc0c0c0c0表无穷小 //1061109567, -1061109568 )
②如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
Why?
可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。
#include<bits/stdc++.h>
using namespace std;
int dp[1005][1005];
int weight[1005];
int value[1005];
int main()
{
int n,m;
cin>>m>>n;
memset(dp,0,sizeof(dp));//数组清空,其实同时就把边界给做了清理
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i];
//从1开始有讲究的因为涉及到dp[i-1][j],从0开始会越界
for(int i=1; i<=n; i++)//判断每个物品能否放进
{
for(int j=0; j<=m; j++)//对每个状态进行判断
//这边两重for都可以倒着写,只是需要处理最边界的情况,滚动数组不一样
{
if(j>=weight[i])//能放进
dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
else dp[i][j]=dp[i-1][j];//不能放进
}
}
cout<<dp[n][m]<<endl;
return 0;
}
!!!!空间复杂度优化后:
用滚动数组
说白了二维数组只是把每个物品都跑一遍,然后到最后一个物品的时候输出答案,那么过程值只是计算的时候用一次,我没必要存下来。所以用一个数组去滚动存储,然后用后一个状态的值去覆盖前面一个状态。然后形象的叫它:滚动数组(ma!dan!一点都不形象,我理解了好久)
好吧,假装很形象。
那么问题来了,怎么样用一维的去代替二维的工作,或者说怎么去思考。这是一个难点。
那么我们想,遍历物品的那个for肯定不能省去,然后里边的for也不能省。。。。那么。就把那个i给他删了吧,好像确实没啥用哦。
然后就出现了这样的代码
#include<bits/stdc++.h>
using namespace std;
int dp[1005];//滚动数组的写法,省下空间省不去时间
int weight[1005];
int value[1005];
int main()
{
int n,m;
cin>>m>>n;
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i];
for(int i=1; i<=n; i++)//对每个数判断,可反
{
for(int j=m; j>=weight[i]; j--)//这里这个循环定死,不能反,反了就是完全背包
{
dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);//其实不断在判断最优解,一层一层的
}
}
cout<<dp[m]<<endl;
return 0;
}
其实就是规定从m开始循环,保证了选择这个物品时,肯定不会重复使用状态。
从下到上,从右往左
二.完全背包
特点:每种物品有无限件
#include<bits/stdc++.h>
using namespace std;
int dp[100005];//m
struct Node{
int a,b;
}node[1005];//n
int main(){
int n;
while(~scanf("%d",&n)){
for(int i=0;i<n;i++){
scanf("%d%d",&node[i].a,&node[i].b);
}
int m;
scanf("%d",&m);
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++){
for(int j=node[i].b;j<=m;j++){//这样就是完全背包
dp[j]=max(dp[j],dp[j-node[i].b]+node[i].a);
}
}
printf("%d\n",dp[m]);
}
return 0;
}
三.多重背包
特点:每种物品有有限件num[i]
可以把物品拆开,把相同的num[i]件物品 看成 价值跟重量相同的num[i]件不同的物品
#include<bits/stdc++.h>
using namespace std;
int dp[1005];
int weight[1005],value[1005],num[1005];
int main()
{
int n,m;
cin>>n>>m;
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i]>>num[i];
for(int i=1; i<=n; i++)//每种物品
for(int k=0; k<num[i]; k++)//其实就是把这类物品展开,调用num[i]次01背包代码
for(int j=m; j>=weight[i]; j--)//正常的01背包代码
dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);
cout<<dp[m]<<endl;
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N = 1005;
int dp[N];
int c[N],w[N],num[N];
int n,m;
void ZeroOne_Pack(int cost,int weight,int n)//吧01背包封装成函数
{
for(int i=n; i>=cost; i--)
dp[i] = max(dp[i],dp[i-cost] + weight);
}
void Complete_Pack(int cost,int weight,int n)//把完全背包封装成函数
{
for(int i=cost; i<=n; i++)
dp[i] = max(dp[i],dp[i-cost] + weight);
}
int Multi_Pack(int c[],int w[],int num[],int n,int m)//多重背包
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)//遍历每种物品
{
if(num[i]*c[i] > m)
Complete_Pack(c[i],w[i],m);
//如果全装进去已经超了重量,相当于这个物品就是无限的
//因为是取不光的。那么就用完全背包去套
else
{
int k = 1;
//取得光的话,去遍历每种取法
//这里用到是二进制思想,降低了复杂度
//为什么呢,因为他取的1,2,4,8...与余数个该物品,打包成一个大型的该物品
//这样足够凑出了从0-k个该物品取法
//把复杂度从k变成了logk
//如k=11,则有1,2,4,4,足够凑出0-11个该物品的取法
while(k < num[i])
{
ZeroOne_Pack(k*c[i],k*w[i],m);
num[i] -= k;
k <<= 1;
}
ZeroOne_Pack(num[i]*c[i],num[i]*w[i],m);
}
}
return dp[m];
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>m>>n;
for(int i=1; i<=n; i++)
cin>>c[i]>>w[i]>>num[i];
cout<<Multi_Pack(c,w,num,n,m)<<endl;
}
return 0;
}