DeepFM: A Factorization-Machine based Neural Network for CTR Prediction【论文记录】

1 摘要

  • DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning
    DeepFM 结合了因子分解机的推荐能力和特征学习的深度学习功能

2 介绍

  • CNN-based models are biased to the interactions between neighboring features while RNN-based models are more suitable for click data with sequential dependency
    基于 CNN 的模型偏向于相邻特征之间的交互,而基于 RNN 的模型更适合于具有顺序依赖的点击数据

  • PNN and FNN, like other deep models, capture little low-order feature interactions
    PNN、FNN 与其他深层模型一样,捕获的低阶特征交互很少

  • DeepFM can be trained efficiently because its wide part and deep part, share the same input and also the embedding vector.
    DeepFM 的宽组件和深组件共享同一输入和嵌入向量,因此可以有效地训练 DeepFM。

3 方法

DeepFM

  • FM component and deep component, that share the same input
    FM 分量和 deep 分量,它们共享相同的输入

3.1 FM部分

  • In previous approaches, the parameter of an interaction of features i i i and j j j can be trained only when feature i i i and feature j j j both appear in the same data record.

    While in FM, it is measured via the inner product of their latent vectors V i V_i Vi and V j V_j Vj. Thanks to this flexible design, FM can train latent vector V i ( V j ) V_i (V_j) Vi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值