Support vector machine(SVM)

本文探讨了通过修改逻辑回归的激活函数来形成新的优化目标,并分析了该目标函数的特性,特别是在正则化参数无限大的情况下。进一步讨论了如何使用核函数处理非线性问题,介绍了高斯核和线性核的应用及其对拟合的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The line of thinking is:
(1) modify the activation function of logistics regression, and then put out the optimization function.

(2) discuss the nature of this new optimiaztion function.

(3) kernel function.

1 optimization objective

在这里插入图片描述

where:

C equals to in Regularization.

cost0() and cost(1) are shown below.

在这里插入图片描述
在这里插入图片描述

2 nature of this new optimiaztion function

In this function, if C is infinite. This function will be:
在这里插入图片描述

We hope that:
For postive point y=1,cost( θ T ∗ x i \theta ^{T}*x_{i} θTxi)=0(z>=1).
For negative point y=0,cos2( θ T ∗ x i \theta ^{T}*x_{i} θTxi)=0(z<-1).

在这里插入图片描述
In this situation(C is infinite), machine will choose the black line as dividing line. Because we make the dividing line of θ T ∗ x i \theta ^{T}*x_{i} θTxi is 1/-1 instead of 0.

This classifier with maximum interval will provide a more reliable dividing line to classify. We can imgine that if dividing line is green line or pink line, it may be false if there is a little noisy.

3 kernel

The most commonly used kernel function are Gaussian kernel function and linear kernel function.

Kernel function is used to deal with non-linear situation. For example:
在这里插入图片描述
Gaussian kernel function is:
在这里插入图片描述
We take x1=(3,5) , so its image is as follows:

在这里插入图片描述
We find that if a point is closed to x1(3,5), the function will be closed to 1. Considering this function, we difinite a new optimization function:
在这里插入图片描述
where:
f i f_i fi is Guassian kernel used on different x i x_i xi.(A thought is to choose all the sample as x i x_i xi)
Minimize optimization function, we will find θ T \theta ^{T} θT.

When σ \sigma σ is high, it may lead to under fitting; when When σ \sigma σ is low, it may lead to over fitting.

If f i f_i fi = x T x x ^{T}x xTx, we named it linear kernel.

There are several other kernel functions, but they are used less commonly.

Reference

链接: 支持向量机通俗导论(理解SVM的三层境界).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值