把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
Input
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
Output
对输入的每组数据M和N,用一行输出相应的K。
Sample Input
1 7 3
Sample Output
8
解题思路:
设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论: ①当m<n:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m); ②当m>=n:不同的放法可以分成两类:含0的方案数,不含0的方案数: 1、含0的方案数,至少有一个盘子空着,即相当于f(m,n) = f(m,n-1); 2、不含0的方案数,所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n); 而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)。 递归出口条件说明: 当n==1时,所有苹果都必须放在一个盘子里,所以返回1; 当没有苹果可放(m==0)时,定义为1种放法; 递归的两条路,第一条n会逐渐减少,终会到达出口n==1; 第二条m会逐渐减少,因为n>m时,会return f(m,m),所以终会到达出口m==0. 为什么出口m==0呢?因为我们总是让m>=n来求解的,所以m-n>=0,让m=0时候结束。如果改为m=1,则可能出现m-n=0的情况(与条件不符)从而不能得到正确解。 AC代码一(递归写法):
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int m,n;
int fun(int m,int n)
{
if(m==0||n==1) return 1;
if(n>m) return fun(m,m);
else return fun(m,n-1)+fun(m-n,n);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&m,&n);
printf("%d\n",fun(m,n));
}
return 0;
}