计算机网络第3章(数据链路层)

3.1 数据链路层概述

3.1.1 概述

链路是从一个结点到相邻结点的一段物理线路,数据链路则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)
网络中的主机、路由器等都必须实现数据链路层
在这里插入图片描述
局域网中的主机、交换机等都必须实现数据链路层
在这里插入图片描述
从层次上来看数据的流动
在这里插入图片描述
仅从数据链路层观察帧的流动
在这里插入图片描述

  • 链路(Link)就是从一个结点到相邻结点的一段物理线路,而中间没有任何其他的交换结点。
  • 数据链路(Data Link)是指把实现通信协议的硬件和软件加到链路上,就构成了数据链路。
  • 数据链路层以帧为单位传输和处理数据。

主机H1 到主机H2 所经过的网络可以是多种不同类型的
注意:不同的链路层可能采用不同的数据链路层协议

3.1.2 数据链路层使用的信道

数据链路层属于计算机网路的低层。数据链路层使用的信道主要有以下两种类型

  • 点对点信道 —— 一对一
  • 广播信道 —— 一对多
    在这里插入图片描述
    局域网属于数据链路层
  • 局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。
  • 而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看,局域网仍属于数据链路层的范围

3.1.3 三个重要问题

数据链路层传送的协议数据单元是
(1)封装成帧

  • 封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。
  • 首部和尾部的一个重要作用就是进行帧定界。
    在这里插入图片描述

(2)差错控制
在传输过程中可能会产生比特差错:1 可能会变成 0, 而 0 也可能变成 1。

在这里插入图片描述

(3)可靠传输

  • 接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃
  • 如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施

如果数据链路层向其**上层提供的是可靠服务**,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本.
在这里插入图片描述
以上三个问题都是使用点对点信道的数据链路层来举例的:
如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决
如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通
过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如
何知道发送的帧是发送给自己的
在这里插入图片描述
解决方法:

  • 将帧的目的地址添加在帧中一起传输
  • 可以用编址(地址)的来解决
    在这里插入图片描述
    还有数据碰撞问题
    在这里插入图片描述

3.2 封装成帧

3.2.1 介绍

封装成帧是指数据链路层给上层交付的协议数据单元添加帧头帧尾使之成为帧。
帧头和帧尾中包含有重要的控制信息
在这里插入图片描述
发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比
特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个
的帧

答:需要帧头和帧尾来做帧定界
在这里插入图片描述
并不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子

在这里插入图片描述
前导码

  • 前同步码:作用是使接收方的时钟同步
  • 帧开始定界符:表明其后面紧跟着的就是MAC帧

另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符
在这里插入图片描述

3.2.2 透明传输

透明:指某一个实际存在的事物看起来却好像不存在一样。
透明传输是指数据链路层对上层交付的传输数据没有任何限制,好像数据链路层不存在一样

帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中,恰好也包含这个特定数值,接收
方就不能正确接收
在这里插入图片描述
所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值
在这里插入图片描述

  • 解决方法:面向字节的物理链路使用字节填充 (byte stuffing) 或字符填充 (character stuffing),面向
    比特的物理链路使用比特填充的方法实现透明传输。
  • 发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面插入一个转义字符“ESC”(其十六
    进制编码是1B)。
  • 接收端的数据链路层在将数据送往网络层之前删除插入的转义字符
  • 如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连
    续的两个转义字符时,就删除其中前面的一个。

帧的数据部分长度
在这里插入图片描述

3.2.3 总结

在这里插入图片描述

3.3 差错检测

3.3.1 介绍

  • 实际的通信链路都不是理想的,比特在传输过程中可能会产生差错:1可能会变成0而0也可能变成1。这称为比特差错
  • 在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率BER(Bit Error Rate)。
  • 使用差错检测码来检测数据在传输过程中是否产生了比特差错,是数据链路层所要解决的重要问题之一。
    在这里插入图片描述

3.3.2 奇偶校验

  • 在待发送的数据后面添加1位奇偶校验位,使整个数据(包括所添加的校验位在内)中“1”的个数为奇数(奇校验)或偶数(偶校验)。
  • 如果有奇数个位发生误码,则奇偶性发生变化,可以检查出误码;
  • 如果有偶数个位发生误码,则奇偶性不发生变化,不能检查出误码(漏检);
    在这里插入图片描述

3.3.3 循环冗余校验CRC(Cyclic Redundancy Check)

循环冗余校验CRC(Cyclic Redundancy Check)

  • 收发双方约定好一个生成多项式G(x);
  • 发送方基于待发送的数据和生成多项式计算出差错检测码冗余码),将其添加到待传输数据的后面一起传输
  • 接收方通过生成多项式来计算收到的数据是否产生了误码;
    在这里插入图片描述
    例题:
    在这里插入图片描述

在这里插入图片描述

3.3.4 总结

  • 检错码只能检测出帧在传输过程中出现了差错,但并不能定位错误,因此无法纠正错误
  • 要想纠正传输中的差错,可以使用冗余信息更多的纠错码进行前向纠错。但纠错码的开销比较大,在计算机网络中较少使用
  • 循环冗余校验CRC有很好的检错能力(漏检率非常低),虽然计算比较复杂,但非常易于用硬件实现,因此被广泛应用于数据链路层
  • 在计算机网络中通常采用我们后续课程中将要讨论的检错重传方式来纠正传输中的差错或者仅仅是丢弃检测到差错的帧,这取决于数据链路层向其上层提供的是可靠传输服务还是不可靠传输服务。

循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码

3.4 可靠传输

3.4.1 基本概念

发送端发送什么,接收端就收到什么
1. 下面是比特差错

  • 使用差错检测技术(例如循环冗余校验CRC),接收方的数据链路层就可检测出帧在传输过程中是否产生了误码(比特错误)。
  • 数据链路层向上层提供的服务类型
    (1)不可靠传输服务:仅仅丢弃有误码的帧,其他什么也不做;
    (2)可靠传输服务:想办法实现发送端发送什么,接收端就收到什么
  • 一般情况下,有线链路的误码率比较低,为了减小开销,并不要求数据链路层向上提供可靠传输服务。即使出现了误码,可靠传输的问题由其上层处理。
  • 无线链路易受干扰,误码率比较高,因此要求数据链路层必须向上层提供可靠传输服务。

在这里插入图片描述
2. 其他传输差错

  • 比特差错只是传输差错中的一种。
  • 从整个计算机网络体系结构来看,传输差错还包括分组丢失、分组失序以及分组重复

(1)分组丢失
路由器输入队列快满了,主动丢弃收到的分组
在这里插入图片描述

(2)分组失序
数据并未按照发送顺序依次到达接收端
在这里插入图片描述

(3)分组重复
由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重
发,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值