java集合(七)-Set接口及HashSet、TreeSet

本文介绍了Set架构,其实现类基于Map实现,是不允许重复元素的集合。重点讲解了HashSet和TreeSet,HashSet由HashMap实现,元素无序,允许null元素;TreeSet基于TreeMap,元素有序,支持自然排序或自定义排序,还介绍了它们的特性、方法及原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Set架构

                          

Set的实现类都是基于Map来实现的(HashSet是通过HashMap实现的,TreeSet是通过TreeMap实现的)。

  • Set 是继承于Collection的接口。它是一个不允许有重复元素的集合。
  •  AbstractSet 是一个抽象类,它继承AbstractCollection,AbstractCollection实现了Set中绝大部分函数,为Set的实现类提供了便利。
  • HastSet 和 TreeSet 是Set的两个实现类。
  •         HashSet依赖于HashMap,它实际上是通过HashMap实现的。HashSet中的元素是无序的。
  •         TreeSet依赖于TreeMap,它实际上是通过TreeMap实现的。TreeSet中的元素是有序的。
  • HashSet通过iterator()返回的迭代器是fail-fast的。

二、HashSet

1、简介

    HashSet继承于AbstractSet,并且实现了Set、Cloneable、 Serializable接口。

public class HashSet<E>extends AbstractSet<E>
             implements Set<E>, Cloneable, Serializable

      HashSet 是一个没有重复元素的集合。它是由HashMap实现的,不保证元素的顺序,而且HashSet允许使用 null 元素
HashSet是非同步的。如果多个线程同时访问一个哈希 set,而其中至少一个线程修改了该 set,那么它必须 保持外部同步。这通常是通过对自然封装该 set 的对象执行同步操作来完成的。如果不存在这样的对象,则应该使用 Collections.synchronizedSet 方法来“包装” set。最好在创建时完成这一操作,以防止对该 set 进行意外的不同步访问:

Set s = Collections.synchronizedSet(new HashSet(...));

2、HashSet主要的API

boolean         add(E object) //将指定的元素添加到此集合(如果尚未存在)。 
void            clear()
Object          clone()
boolean         contains(Object object)
boolean         isEmpty()
Iterator<E>     iterator()
boolean         remove(Object object)
int             size()

3、HashSet源码:可以看到它是基于HashMap实现的,它的方法实现也就是在内部调用HashMap的方法

package java.util;

public class HashSet<E>
    extends AbstractSet<E>
    implements Set<E>, Cloneable, java.io.Serializable
{
    static final long serialVersionUID = -5024744406713321676L;

    // HashSet是通过map(HashMap对象)保存内容的
    private transient HashMap<E,Object> map;

    // PRESENT是向map中插入key-value对应的value
    // 因为HashSet中只需要用到key,而HashMap是key-value键值对;
    // 所以,向map中添加键值对时,键值对的值固定是PRESENT
    private static final Object PRESENT = new Object();

    // 默认构造函数
    public HashSet() {
        // 调用HashMap的默认构造函数,创建map
        map = new HashMap<E,Object>();
    }

    // 带集合的构造函数
    public HashSet(Collection<? extends E> c) {
        // 创建map。
        // 为什么要调用Math.max((int) (c.size()/.75f) + 1, 16),从 (c.size()/.75f) + 1 和 16 中选择一个比较大的树呢?        
        // 首先,说明(c.size()/.75f) + 1
        //   因为从HashMap的效率(时间成本和空间成本)考虑,HashMap的加载因子是0.75。
        //   当HashMap的“阈值”(阈值=HashMap总的大小*加载因子) < “HashMap实际大小”时,
        //   就需要将HashMap的容量翻倍。
        //   所以,(c.size()/.75f) + 1 计算出来的正好是总的空间大小。
        // 接下来,说明为什么是 16 。
        //   HashMap的总的大小,必须是2的指数倍。若创建HashMap时,指定的大小不是2的指数倍;
        //   HashMap的构造函数中也会重新计算,找出比“指定大小”大的最小的2的指数倍的数。
        //   所以,这里指定为16是从性能考虑。避免重复计算。
        map = new HashMap<E,Object>(Math.max((int) (c.size()/.75f) + 1, 16));
        // 将集合(c)中的全部元素添加到HashSet中
        addAll(c);
    }

    // 指定HashSet初始容量和加载因子的构造函数
    public HashSet(int initialCapacity, float loadFactor) {
        map = new HashMap<E,Object>(initialCapacity, loadFactor);
    }

    // 指定HashSet初始容量的构造函数
    public HashSet(int initialCapacity) {
        map = new HashMap<E,Object>(initialCapacity);
    }

    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<E,Object>(initialCapacity, loadFactor);
    }

    // 返回HashSet的迭代器
    public Iterator<E> iterator() {
        // 实际上返回的是HashMap的“key集合的迭代器”
        return map.keySet().iterator();
    }

    public int size() {
        return map.size();
    }

    public boolean isEmpty() {
        return map.isEmpty();
    }

    public boolean contains(Object o) {
        return map.containsKey(o);
    }

    // 将元素(e)添加到HashSet中
    public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }

    // 删除HashSet中的元素(o)
    public boolean remove(Object o) {
        return map.remove(o)==PRESENT;
    }

    public void clear() {
        map.clear();
    }

    // 克隆一个HashSet,并返回Object对象
    public Object clone() {
        try {
            HashSet<E> newSet = (HashSet<E>) super.clone();
            newSet.map = (HashMap<E, Object>) map.clone();
            return newSet;
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }
    }

    // java.io.Serializable的写入函数
    // 将HashSet的“总的容量,加载因子,实际容量,所有的元素”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out HashMap capacity and load factor
        s.writeInt(map.capacity());
        s.writeFloat(map.loadFactor());

        // Write out size
        s.writeInt(map.size());

        // Write out all elements in the proper order.
        for (Iterator i=map.keySet().iterator(); i.hasNext(); )
            s.writeObject(i.next());
    }


    // java.io.Serializable的读取函数
    // 将HashSet的“总的容量,加载因子,实际容量,所有的元素”依次读出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in HashMap capacity and load factor and create backing HashMap
        int capacity = s.readInt();
        float loadFactor = s.readFloat();
        map = (((HashSet)this) instanceof LinkedHashSet ?
               new LinkedHashMap<E,Object>(capacity, loadFactor) :
               new HashMap<E,Object>(capacity, loadFactor));

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i=0; i<size; i++) {
            E e = (E) s.readObject();
            map.put(e, PRESENT);
        }
    }
}

看看它的增删方法:一目了然

// PRESENT是向map中插入key-value对应的value
// 因为HashSet中只需要用到key,而HashMap是key-value键值对;
// 所以,向map中添加键值对时,键值对的值固定是PRESENT
private static final Object PRESENT = new Object();

// 将元素(e)添加到HashSet中
public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}
// 删除HashSet中的元素(o),如果存在,则从该集合中删除指定的元素。返回true,不存在返回false
public boolean remove(Object o) {
  return map.remove(o)==PRESENT;
}

因为Set集合是无序的但不能重复,再来想想为什么添加能保证不重复?看代码我们只能从map.put()中找答案:

由于HashMap的put()方法添加key-value对时,当新放入HashMap的Entry中key:  

  • 与集合中原有Entry的key相同(hashCode()返回值相等,通过equals比较也返回true)  
  • 新添加的Entry的value会将覆盖原来Entry的value,但key不会有任何改变。      

     因此如果向HashSet中添加一个已经存在的元素时,新添加的集合元素将不会被放入HashMap中,  原来的元素也不会有任何改变,这也就满足了Set中元素不重复的特性。 

4、相关方法操作以及遍历

package SetTest;

import java.util.HashSet;
import java.util.Iterator;

public class HashSetTest {
	public static void main(String[] args) {
		HashSet<String> set = new HashSet<>();
		set.add("A");
		set.add("B");
		set.add("C");
		set.add("D");
		set.add("E");
		//添加相同的值
		set.add("E");
		//打印结果和数组大小:[A, B, C, D, E] 5 ->说明相同元素没有被添加
		System.out.println(set);
		System.out.println(set.size());
		//通过迭代器遍历
		Iterator<String> iterator = set.iterator();
		while(iterator.hasNext()) {
			System.out.println(iterator.next());
		}
		//转换为数组,遍历数组
		String [] arr = set.toArray(new String[0]);
		for (String value : arr) {
			System.out.println(value);
		}
	}
}

四、TreeSet

1、TreeSet简介

public class TreeSet<E extends AbstractSet<E>
             implements NavigableSet<E>, Cloneable, Serializable

TreeSet 是一个有序的集合,它的作用是提供有序的Set集合

  • 它继承于AbstractSet抽象类,实现了NavigableSet<E>, Cloneable, java.io.Serializable接口。
  • TreeSet 继承于AbstractSet,所以它是一个Set集合,具有Set的属性和方法。
  • TreeSet 实现了NavigableSet接口,意味着它支持一系列的导航方法。比如查找与指定目标最匹配项。
  • TreeSet 实现了Cloneable接口,意味着它能被克隆。
  • TreeSet 实现了java.io.Serializable接口,意味着它支持序列化。
  • TreeSet是基于TreeMap实现的。
  • TreeSet是非同步的。 它的iterator 方法返回的迭代器是fail-fast的。

TreeSet中的元素支持2种排序方式:自然排序 或者 根据创建TreeSet 时提供的 Comparator 进行排序。这取决于使用的构造方法。

TreeSet为基本操作(add、remove 和 contains)提供受保证的 log(n) 时间开销。

2、常用方法

(1) TreeSet是有序的Set集合,因此支持add、remove、get等方法。
(2) 和NavigableSet一样,TreeSet的导航方法大致可以区分为两类,一类时提供元素项的导航方法,返回某个元素;另一类时提供集合的导航方法,返回某个集合。lower、floor、ceiling 和 higher 分别返回小于、小于等于、大于等于、大于给定元素的元素,如果不存在这样的元素,则返回 null。

boolean                   add(E object)
boolean                   addAll(Collection<? extends E> collection)
void                      clear()
Object                    clone()
boolean                   contains(Object object)
E                         first()
boolean                   isEmpty()
E                         last()
E                         pollFirst()
E                         pollLast()
E                         lower(E e)
E                         floor(E e)
E                         ceiling(E e)
E                         higher(E e)
boolean                   remove(Object object)
int                       size()
Comparator<? super E>     comparator()
Iterator<E>               iterator()
Iterator<E>               descendingIterator()
SortedSet<E>              headSet(E end)
NavigableSet<E>           descendingSet()
NavigableSet<E>           headSet(E end, boolean endInclusive)
SortedSet<E>              subSet(E start, E end)
NavigableSet<E>           subSet(E start, boolean startInclusive, E end, boolean endInclusive)
NavigableSet<E>           tailSet(E start, boolean startInclusive)
SortedSet<E>              tailSet(E start)

3、TreeSet的原理

  • TreeSet实际上是TreeMap实现的。当我们构造TreeSet时;若使用不带参数的构造函数,则TreeSet的使用自然比较器;若用户需要使用自定义的比较器,则需要使用带比较器的参数。
  • TreeSet是非线程安全的。
  • TreeSet实现java.io.Serializable的方式。当写入到输出流时,依次写入“比较器、容量、全部元素”;当读出输入流时, 再依次读。
  • TreeSet不支持快速随机遍历,只能通过迭代器进行遍历!

源码:

package java.util;

public class TreeSet<E> extends AbstractSet<E>
    implements NavigableSet<E>, Cloneable, java.io.Serializable
{
    // NavigableMap对象
    private transient NavigableMap<E,Object> m;

    // TreeSet是通过TreeMap实现的,
    // PRESENT是键-值对中的值。
    private static final Object PRESENT = new Object();

    // 不带参数的构造函数。创建一个空的TreeMap
    public TreeSet() {
        this(new TreeMap<E,Object>());
    }

    // 将TreeMap赋值给 "NavigableMap对象m"
    TreeSet(NavigableMap<E,Object> m) {
        this.m = m;
    }

    // 带比较器的构造函数。
    public TreeSet(Comparator<? super E> comparator) {
        this(new TreeMap<E,Object>(comparator));
    }

    // 创建TreeSet,并将集合c中的全部元素都添加到TreeSet中
    public TreeSet(Collection<? extends E> c) {
        this();
        // 将集合c中的元素全部添加到TreeSet中
        addAll(c);
    }

    // 创建TreeSet,并将s中的全部元素都添加到TreeSet中
    public TreeSet(SortedSet<E> s) {
        this(s.comparator());
        addAll(s);
    }

    // 返回TreeSet的顺序排列的迭代器。
    // 因为TreeSet时TreeMap实现的,所以这里实际上时返回TreeMap的“键集”对应的迭代器
    public Iterator<E> iterator() {
        return m.navigableKeySet().iterator();
    }

    // 返回TreeSet的逆序排列的迭代器。
    // 因为TreeSet时TreeMap实现的,所以这里实际上时返回TreeMap的“键集”对应的迭代器
    public Iterator<E> descendingIterator() {
        return m.descendingKeySet().iterator();
    }

    // 返回TreeSet的大小
    public int size() {
        return m.size();
    }

    // 返回TreeSet是否为空
    public boolean isEmpty() {
        return m.isEmpty();
    }

    // 返回TreeSet是否包含对象(o)
    public boolean contains(Object o) {
        return m.containsKey(o);
    }

    // 添加e到TreeSet中
    public boolean add(E e) {
        return m.put(e, PRESENT)==null;
    }

    // 删除TreeSet中的对象o
    public boolean remove(Object o) {
        return m.remove(o)==PRESENT;
    }

    // 清空TreeSet
    public void clear() {
        m.clear();
    }

    // 将集合c中的全部元素添加到TreeSet中
    public  boolean addAll(Collection<? extends E> c) {
        // Use linear-time version if applicable
        if (m.size()==0 && c.size() > 0 &&
            c instanceof SortedSet &&
            m instanceof TreeMap) {
            SortedSet<? extends E> set = (SortedSet<? extends E>) c;
            TreeMap<E,Object> map = (TreeMap<E, Object>) m;
            Comparator<? super E> cc = (Comparator<? super E>) set.comparator();
            Comparator<? super E> mc = map.comparator();
            if (cc==mc || (cc != null && cc.equals(mc))) {
                map.addAllForTreeSet(set, PRESENT);
                return true;
            }
        }
        return super.addAll(c);
    }

    // 返回子Set,实际上是通过TreeMap的subMap()实现的。
    public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
                                  E toElement,   boolean toInclusive) {
        return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
                                       toElement,   toInclusive));
    }

    // 返回Set的头部,范围是:从头部到toElement。
    // inclusive是是否包含toElement的标志
    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
        return new TreeSet<E>(m.headMap(toElement, inclusive));
    }

    // 返回Set的尾部,范围是:从fromElement到结尾。
    // inclusive是是否包含fromElement的标志
    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
        return new TreeSet<E>(m.tailMap(fromElement, inclusive));
    }

    // 返回子Set。范围是:从fromElement(包括)到toElement(不包括)。
    public SortedSet<E> subSet(E fromElement, E toElement) {
        return subSet(fromElement, true, toElement, false);
    }

    // 返回Set的头部,范围是:从头部到toElement(不包括)。
    public SortedSet<E> headSet(E toElement) {
        return headSet(toElement, false);
    }

    // 返回Set的尾部,范围是:从fromElement到结尾(不包括)。
    public SortedSet<E> tailSet(E fromElement) {
        return tailSet(fromElement, true);
    }

    // 返回Set的比较器
    public Comparator<? super E> comparator() {
        return m.comparator();
    }

    // 返回Set的第一个元素
    public E first() {
        return m.firstKey();
    }

    // 返回Set的最后一个元素
    public E first() {
    public E last() {
        return m.lastKey();
    }

    // 返回Set中小于e的最大元素
    public E lower(E e) {
        return m.lowerKey(e);
    }

    // 返回Set中小于/等于e的最大元素
    public E floor(E e) {
        return m.floorKey(e);
    }

    // 返回Set中大于/等于e的最小元素
    public E ceiling(E e) {
        return m.ceilingKey(e);
    }

    // 返回Set中大于e的最小元素
    public E higher(E e) {
        return m.higherKey(e);
    }

    // 获取第一个元素,并将该元素从TreeMap中删除。
    public E pollFirst() {
        Map.Entry<E,?> e = m.pollFirstEntry();
        return (e == null)? null : e.getKey();
    }

    // 获取最后一个元素,并将该元素从TreeMap中删除。
    public E pollLast() {
        Map.Entry<E,?> e = m.pollLastEntry();
        return (e == null)? null : e.getKey();
    }

    // 克隆一个TreeSet,并返回Object对象
    public Object clone() {
        TreeSet<E> clone = null;
        try {
            clone = (TreeSet<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        clone.m = new TreeMap<E,Object>(m);
        return clone;
    }

    // java.io.Serializable的写入函数
    // 将TreeSet的“比较器、容量,所有的元素值”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        s.defaultWriteObject();

        // 写入比较器
        s.writeObject(m.comparator());

        // 写入容量
        s.writeInt(m.size());

        // 写入“TreeSet中的每一个元素”
        for (Iterator i=m.keySet().iterator(); i.hasNext(); )
            s.writeObject(i.next());
    }

    // java.io.Serializable的读取函数:根据写入方式读出
    // 先将TreeSet的“比较器、容量、所有的元素值”依次读出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden stuff
        s.defaultReadObject();

        // 从输入流中读取TreeSet的“比较器”
        Comparator<? super E> c = (Comparator<? super E>) s.readObject();

        TreeMap<E,Object> tm;
        if (c==null)
            tm = new TreeMap<E,Object>();
        else
            tm = new TreeMap<E,Object>(c);
        m = tm;

        // 从输入流中读取TreeSet的“容量”
        int size = s.readInt();

        // 从输入流中读取TreeSet的“全部元素”
        tm.readTreeSet(size, s, PRESENT);
    }

    // TreeSet的序列版本号
    private static final long serialVersionUID = -2479143000061671589L;
}

遍历方式与HashSet类似。

借鉴博客:https://www.cnblogs.com/skywang12345/p/3323085.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值