list,ndarray,tensor之间转换

本文介绍了如何在Python环境中使用numpy和torch进行不同类型数据(list、ndarray和tensor)之间的转换,并展示了转换过程中的实例。重点在于理解list到ndarray和tensor,以及ndarray和tensor之间的相互转换操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:python3.7.10、numpy1.21.0、torch1.5.0+cu101

import numpy as np
import torch

# 定义三种类型数据
list = [[1,2,3],[2,3,4]]
ndarray = np.array([[1,2,3],[2,3,4]])
tensor = torch.tensor([[1,2,3],[2,3,4]])

print(list, type(list))
"""[[1, 2, 3], [2, 3, 4]] <class 'list'>"""

print(ndarray, type(ndarray))
"""[[1 2 3]
    [2 3 4]] <class 'numpy.ndarray'>"""

print(tensor, type(tensor))
"""tensor([[1, 2, 3],
           [2, 3, 4]]) <class 'torch.Tensor'>"""

# list to ndarray and Tensor
ndarray = np.array(list)
tensor = torch.tensor(list)
print(ndarray, "\n", tensor)
"""
[[1 2 3]
 [2 3 4]] 
 tensor([[1, 2, 3],
        [2, 3, 4]])
"""

# ndarray to list and Tensor
list = ndarray.tolist()
tensor = torch.from_numpy(ndarray)
print(list, "\n", tensor)
"""
[[1, 2, 3], [2, 3, 4]] 
 tensor([[1, 2, 3],
        [2, 3, 4]], dtype=torch.int32)
"""

# Tensor to ndarray and list
list = tensor.numpy().tolist()
ndarray = tensor.numpy()
print(list, "\n", ndarray)

"""
[[1, 2, 3], [2, 3, 4]] 
 [[1 2 3]
 [2 3 4]]
"""

在PyTorch中,将Tensor转换为NumPy数组有几种方法。一种常用的方法是使用`.numpy()`方法。这个方法将Tensor对象转换为NumPy数组,但是需要注意的是,只有当Tensor对象在CPU上时才能进行转换。因此,如果你的Tensor对象在GPU上,需要先将其移到CPU上,然后再使用`.numpy()`方法进行转换。具体代码如下所示: ```python import torch import numpy as np # 创建一个Tensor对象 a = torch.tensor([1, 2, 3]) # 将Tensor对象转换为NumPy数组 b = a.cpu().numpy() # 打印转换后的结果 print(type(a)) print(type(b)) print(a) print(b) ``` 输出结果为: ``` <class 'torch.Tensor'> <class 'numpy.ndarray'> tensor([1, 2, 3]) <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Tensor和Numpy互相转换](https://blog.youkuaiyun.com/m0_56676881/article/details/126912457)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [tensor与numpy转换资源合集](https://download.youkuaiyun.com/download/Rocky006/87842415)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [pytorch 实现tensor与numpy数组转换](https://download.youkuaiyun.com/download/weixin_38668225/13762306)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值