搜索引擎的优势
有了数据库分页查询,为什么还需要搜索引擎?
- 搜索引擎
速度
上很快 数据库
分页查询,随着数据库数据量增大,页数靠后,会导致搜索速度变慢
,但是搜索引擎不会- 搜索引擎支持
分词查询,地理坐标
搜索等
搜索引擎排名
- 搜索引擎技术排名:
- Elasticsearch:搜索引擎
- Splunk:商目
- Solr:Apache
认识与安装elasticSearch
前世
Lucene
是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发
Lucene的优势:
- 易扩展
- 高性能(基于倒排索引)
今生
2004年Shay Banon基于Lucene开发了Compass
2010年Shay Banon 重写了Compass,取名为Elasticsearch
。
官网地址:https:/www.elastic.co/cn/,目前最新的版本是:8.x.x
elasticsearch具备下列优势:
- 支持
分布式
,可水平扩展 - 提供
Restful
接口,可被任何语言
调用
结合
elasticsearch结合kibana、Logstash、Beats,是一整套技术栈,被叫做ELK
。被广泛应用在日志数据分析、实时监控等领域。
我们要安装的内容包含2部分:
- elasticsearch:存储、搜索和运算
- kibana:图形化展示
首先Elasticsearch不用多说,是提供核心的数据存储、搜索、分析功能的。
然后是Kibana,Elasticsearch对外提供的是Restful风格的API,任何操作都可以通过发送http请求来完成。不过http请求的方式、路径、还有请求参数的格式都有严格的规范。这些规范我们肯定记不住,因此我们要借助于Kibana这个服务。
Kibana
是elastic公司提供的用于操作Elasticsearch的可视化控制台
。它的功能非常强大,包括:
- 对Elasticsearch数据的搜索、展示
- 对Elasticsearch数据的统计、聚合,并形成图形化报表、图形
- 对Elasticsearch的集群状态监控
- 它还提供了一个开发控制台(DevTools),在其中对Elasticsearch的Restful的API接口提供了
语法提示
安装elasticSearch
通过下面的Docker命令即可安装单机版本的elasticsearch:
docker run -d \
--name es \
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
-e "discovery.type=single-node" \
-v es-data:/usr/share/elasticsearch/data \
-v es-plugins:/usr/share/elasticsearch/plugins \
--privileged \
--network hm-net \
-p 9200:9200 \
-p 9300:9300 \
elasticsearch:7.12.1
注意,这里我们采用的是elasticsearch的7.12.1版本,由于8以上版本的JavaAPI变化很大,在企业中应用并不广泛,企业中应用较多的还是8以下的版本。
如果拉取镜像困难,可以直接导入课前资料提供的镜像tar包:
安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息:
安装Kibana
通过下面的Docker命令,即可部署Kibana:
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=hm-net \
-p 5601:5601 \
kibana:7.12.1
如果拉取镜像困难,可以直接导入课前资料提供的镜像tar包:
安装完成后,直接访问5601端口,即可看到控制台页面:
选择Explore on my own之后,进入主页面:
然后选中Dev tools,进入开发工具页面:
倒排索引
传统数据库
传统数据库(如MySQL)采用正向索引,例如给下表(tb_goods)中的id创建索引:
elasticSearch
elasticsearch采用倒排索引:
文档
(document):每条数据就是一个文档词条
(term):文档按照语义分成的词语
lk分词器
中文分词往往需要根据语义分析,比较复杂,这就需要用到中文分词器
,例如IK分词器
。IK分词器是林良益在2006年开源发布的,其采用的正向迭代最细粒度切分算法一直沿用至今。
1.安装IK分词器
方案一:在线安装
运行一个命令即可:
docker exec -it es ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
重启
docker restart es
方案二:离线安装
如果网速较差,也可以选择离线安装。
首先,查看之前安装的Elasticsearch容器的plugins数据卷目录:
docker volume inspect es-plugins
结果如下:
[
{
"CreatedAt": "2024-11-06T10:06:34+08:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
"Name": "es-plugins",
"Options": null,
"Scope": "local"
}
]
可以看到elasticsearch的插件挂载到了/var/lib/docker/volumes/es-plugins/_data这个目录。我们需要把IK分词器上传至这个目录。
找到课前资料提供的ik分词器插件,课前资料提供了7.12.1版本的ik分词器压缩文件,你需要对其解压:
然后上传至虚拟机的/var/lib/docker/volumes/es-plugins/_data这个目录:
最后,重启es容器:
docker restart es
2.使用IK分词器
IK分词器包含两种模式:
- ik_smart:智能语义切分
- ik_max_word:最细粒度切分
我们在Kibana的DevTools上来测试分词器,首先测试Elasticsearch官方提供的标准分词器:
POST /_analyze
{
"analyzer": "standard",
"text": "黑马程序员学习java太棒了"
}
结果如下:
{
"tokens" : [
{
"token" : "黑",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "马",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "程",
"start_offset" : 2,
"end_offset" : 3,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "序",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "员",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 4
},
{
"token" : "学",
"start_offset" : 5,
"end_offset" : 6,
"type" : "<IDEOGRAPHIC>",
"position" : 5
},
{
"token" : "习",
"start_offset" : 6,
"end_offset" : 7,
"type" : "<IDEOGRAPHIC>",
"position" : 6
},
{
"token" : "java",
"start_offset" : 7,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "太",
"start_offset" : 11,
"end_offset" : 12,
"type" : "<IDEOGRAPHIC>",
"position" : 8
},
{
"token" : "棒",
"start_offset" : 12,
"end_offset" : 13,
"type" : "<IDEOGRAPHIC>",
"position" : 9
},
{
"token" : "了",
"start_offset" : 13,
"end_offset" : 14,
"type" : "<IDEOGRAPHIC>",
"position" : 10
}
]
}
可以看到,标准分词器智能1字1词条,无法正确对中文做分词。
我们再测试IK分词器:
POST /_analyze
{
"analyzer": "ik_smart",
"text": "黑马程序员学习java太棒了"
}
执行结果如下:
{
"tokens" : [
{
"token" : "黑马",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "程序员",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "学习",
"start_offset" : 5,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "java",
"start_offset" : 7,
"end_offset" : 11,
"type" : "ENGLISH",
"position" : 3
},
{
"token" : "太棒了",
"start_offset" : 11,
"end_offset" : 14,
"type" : "CN_WORD",
"position" : 4
}
]
}
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“泰裤辣”,“传智播客” 等。
IK分词器无法对这些词汇分词,测试一下:
POST /_analyze
{
"analyzer": "ik_max_word",
"text": "传智播客开设大学,真的泰裤辣!"
}
结果:
{
"tokens" : [
{
"token" : "传",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "智",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "播",
"start_offset" : 2,
"end_offset" : 3,
"type" : "CN_CHAR",
"position" : 2
},
{
"token" : "客",
"start_offset" : 3,
"end_offset" : 4,
"type" : "CN_CHAR",
"position" : 3
},
{
"token" : "开设",
"start_offset" : 4,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 4
},
{
"token" : "大学",
"start_offset" : 6,
"end_offset" : 8,
"type" : "CN_WORD",
"position" : 5
},
{
"token" : "真的",
"start_offset" : 9,
"end_offset" : 11,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "泰",
"start_offset" : 11,
"end_offset" : 12,
"type" : "CN_CHAR",
"position" : 7
},
{
"token" : "裤",
"start_offset" : 12,
"end_offset" : 13,
"type" : "CN_CHAR",
"position" : 8
},
{
"token" : "辣",
"start_offset" : 13,
"end_offset" : 14,
"type" : "CN_CHAR",
"position" : 9
}
]
}
可以看到,传智播客和泰裤辣都无法正确分词。
所以要想正确分词,IK分词器的词库也需要不断的更新,IK分词器提供了扩展词汇的功能。
1)打开IK分词器config目录:
注意,如果采用在线安装的通过,默认是没有config目录的,需要把课前资料提供的ik下的config上传至对应目录。
2)在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
<entry key="ext_dict">ext.dic</entry>
</properties>
3)在IK分词器的config目录新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
传智播客
泰裤辣
4)重启elasticsearch
docker restart es
# 查看 日志
docker logs -f elasticsearch
再次测试,可以发现传智播客和泰裤辣都正确分词了:
{
"tokens" : [
{
"token" : "传智播客",
"start_offset" : 0,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "开设",
"start_offset" : 4,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "大学",
"start_offset" : 6,
"end_offset" : 8,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "真的",
"start_offset" : 9,
"end_offset" : 11,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "泰裤辣",
"start_offset" : 11,
"end_offset" : 14,
"type" : "CN_WORD",
"position" : 4
}
]
}
总结
分词器的作用是什么?
- 创建
倒排索引
时,对文档分词 - 用户搜索时,对输入的内容分词
IK分词器有几种模式?
- ik_smart:
智能
切分,粗粒度 - ik_max_word:最细切分,细粒度
IK分词器如何拓展词条?如何停用词条?
- 利用
config目录的IkAnalyzer.cfg.xml
文件添加拓展词典和停用词典 - 在词典中添加
拓展词条或者停用词条
基本概念
- 索引(index):相同类型的文档的
集合
- 映射(mapping):索引中文档的字段约束信息,类似
表的结构约束
数据库和elasticSearch的对比
Mapping的映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有:
- 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
- properties:该字段的子字段
restful规范
Elasticsearch
提供的所有API都是Restful的接口,遵循Restful
的基本规范:
创建索引和mapping
基本语法:
- 请求方式:PUT
- 请求路径:/索引库名,可以自定义
- 请求参数:mapping映射
格式:
PUT /索引库名称
{
"mappings": {
"properties": {
"字段名":{
"type": "text",
"analyzer": "ik_smart"
},
"字段名2":{
"type": "keyword",
"index": "false"
},
"字段名3":{
"properties": {
"子字段": {
"type": "keyword"
}
}
},
// ...略
}
}
}
示例:
# PUT /heima
{
"mappings": {
"properties": {
"info":{
"type": "text",
"analyzer": "ik_smart"
},
"email":{
"type": "keyword",
"index": "false"
},
"name":{
"properties": {
"firstName": {
"type": "keyword"
}
}
}
}
}
}
查询索引库
基本语法:
- 请求方式:GET
- 请求路径:/索引库名
- 请求参数:无
格式:
GET /索引库名
示例:
GET /heima
修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。因此修改索引库能做的就是向索引库中添加新字段,或者更新索引库的基础属性。
语法说明:
PUT /索引库名/_mapping
{
"properties": {
"新字段名":{
"type": "integer"
}
}
}
示例:
PUT /heima/_mapping
{
"properties": {
"age":{
"type": "integer"
}
}
}
删除索引库
语法:
- 请求方式:DELETE
- 请求路径:/索引库名
- 请求参数:无
格式:
DELETE /索引库名
示例:
DELETE /heima
总结
索引库操作有哪些?
- 创建索引库:PUT /索引库名
- 查询索引库:GET /索引库名
- 删除索引库:DELETE /索引库名
- 修改索引库,添加字段:PUT /索引库名/_mapping
可以看到,对索引库的操作基本遵循的Restful的风格,因此API接口非常统一,方便记忆。
文档操作
crud操作
有了索引库,接下来就可以向索引库中添加数据了。
Elasticsearch中的数据其实就是JSON风格的文档。操作文档自然保护增、删、改、查等几种常见操作,我们分别来学习。
1.新增文档
语法:
POST /索引库名/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
"字段3": {
"子属性1": "值3",
"子属性2": "值4"
},
}
示例:
POST /heima/_doc/1
{
"info": "黑马程序员Java讲师",
"email": "zy@itcast.cn",
"name": {
"firstName": "云",
"lastName": "赵"
}
}
响应:
2.查询文档
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
语法:
GET /{索引库名称}/_doc/{id}
示例:
GET /heima/_doc/1
查看结果:
3.删除文档
删除使用DELETE请求,同样,需要根据id进行删除:
语法:
DELETE /{索引库名}/_doc/id值
示例:
DELETE /heima/_doc/1
结果:
4.修改文档
修改有两种方式:
- 全量修改:直接覆盖原来的文档
- 局部修改:修改文档中的部分字段
4.1.全量修改
全量修改是覆盖原来的文档,其本质是两步操作:
- 根据指定的id删除文档
- 新增一个相同id的文档
注意
:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
// ... 略
}
示例:
PUT /heima/_doc/1
{
"info": "黑马程序员高级Java讲师",
"email": "zy@itcast.cn",
"name": {
"firstName": "云",
"lastName": "赵"
}
}
由于id为1的文档已经被删除,所以第一次执行时,得到的反馈是created
:
所以如果执行第2次时,得到的反馈则是updated
:
4.2.局部修改
局部修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{
"doc": {
"字段名": "新的值",
}
}
示例:
POST /heima/_update/1
{
"doc": {
"email": "ZhaoYun@itcast.cn"
}
}
执行结果:
批处理
批处理采用POST请求,基本语法如下:
POST _bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_id" : "2" } }
{ "create" : { "_index" : "test", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }
其中:
- index代表新增操作
- _index:指定索引库名
- _id指定要操作的文档id
- { “field1” : “value1” }:则是要新增的文档内容
- delete代表删除操作
- _index:指定索引库名
- _id指定要操作的文档id
- update代表更新操作
- _index:指定索引库名
- _id指定要操作的文档id
- { “doc” : {“field2” : “value2”} }:要更新的文档字段
示例,批量新增:
POST /_bulk
{"index": {"_index":"heima", "_id": "3"}}
{"info": "黑马程序员C++讲师", "email": "ww@itcast.cn", "name":{"firstName": "五", "lastName":"王"}}
{"index": {"_index":"heima", "_id": "4"}}
{"info": "黑马程序员前端讲师", "email": "zhangsan@itcast.cn", "name":{"firstName": "三", "lastName":"张"}}
批量删除:
POST /_bulk
{"delete":{"_index":"heima", "_id": "3"}}
{"delete":{"_index":"heima", "_id": "4"}}
小结
文档操作有哪些?
- 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
- 查询文档:GET /{索引库名}/_doc/文档id
- 删除文档:DELETE /{索引库名}/_doc/文档id
- 修改文档:
- 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
- 局部修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}
Java客户端操作索引库
Elasticsearch目前最新版本是8.0,其java客户端有很大变化。不过大多数企业使用的还是8以下版本,所以我们选择使用早期的JavaRestClient客户端来学习。官方文档地址:Elasticsearch Clients|Elastic
然后选择7.12版本,HighLevelRestClient版本:
初始化client
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient
的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)在item-service
模块中引入es
的RestHighLevelClient
依赖:
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
2)因为SpringBoot默认的ES版本是7.17.10,所以我们需要覆盖默认的ES版本:
<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<elasticsearch.version>7.12.1</elasticsearch.version>
</properties>
3)初始化RestHighLevelClient:
初始化的代码如下:
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://192.168.150.101:9200")
));
这里为了单元测试方便,我们创建一个测试类IndexTest,然后将初始化的代码编写在@BeforeEach方法中:
package com.hmall.item.es;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.common.xcontent.XContentType;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import java.io.IOException;
public class ElasticSearchTest {
private RestHighLevelClient client;
@BeforeEach
void setUp() {
this.client = new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://192.168.88.130:9200")
));
}
@Test
void testConnect() {
System.out.println(client);
}
@AfterEach
void tearDown() throws IOException {
this.client.close();
}
}
1.创建索引库
由于要实现对商品搜索,所以我们需要将商品添加到Elasticsearch中,不过需要根据搜索业务的需求来设定索引库结构,而不是一股脑的把MySQL数据写入Elasticsearch.
1.1.Mapping映射
搜索页面的效果如图所示:
实现搜索功能需要的字段包括三大部分:
- 搜索过滤字段
- 分类
- 品牌
- 价格
- 排序字段
- 默认:按照更新时间降序排序
- 销量
- 价格
- 展示字段
- 商品id:用于点击后跳转
- 图片地址
- 是否是广告推广商品
- 名称
- 价格
- 评价数量
- 销量
对应的商品表结构如下,索引库无关字段已经划掉:
结合数据库表结构,以上字段对应的mapping映射属性如下:
因此,最终我们的索引库文档结构应该是这样:
PUT /items
{
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "ik_max_word"
},
"price":{
"type": "integer"
},
"stock":{
"type": "integer"
},
"image":{
"type": "keyword",
"index": false
},
"category":{
"type": "keyword"
},
"brand":{
"type": "keyword"
},
"sold":{
"type": "integer"
},
"commentCount":{
"type": "integer",
"index": false
},
"isAD":{
"type": "boolean"
},
"updateTime":{
"type": "date"
}
}
}
}
1.2.创建索引
创建索引库的API如下:
代码分为三步:
- 1)创建Request对象。
- 因为是创建索引库的操作,因此Request是
CreateIndexRequest
。
- 因为是创建索引库的操作,因此Request是
- 2)添加请求参数
- 其实就是Json格式的Mapping映射参数。因为json字符串很长,这里是定义了静态字符串常量
MAPPING_TEMPLATE
,让代码看起来更加优雅。
- 其实就是Json格式的Mapping映射参数。因为json字符串很长,这里是定义了静态字符串常量
- 3)发送请求
client.indices()
方法的返回值是IndicesClient
类型,封装了所有与索引库操作有关的方法。例如创建索引、删除索引、判断索引是否存在等
在item-service中的IndexTest测试类中,具体代码如下:
@Test
void testCreateIndex() throws IOException {
// 1.创建Request对象
CreateIndexRequest request = new CreateIndexRequest("items");
// 2.准备请求参数
request.source(MAPPING_TEMPLATE, XContentType.JSON);
// 3.发送请求
client.indices().create(request, RequestOptions.DEFAULT);
}
static final String MAPPING_TEMPLATE = "{\n" +
" \"mappings\": {\n" +
" \"properties\": {\n" +
" \"id\": {\n" +
" \"type\": \"keyword\"\n" +
" },\n" +
" \"name\":{\n" +
" \"type\": \"text\",\n" +
" \"analyzer\": \"ik_max_word\"\n" +
" },\n" +
" \"price\":{\n" +
" \"type\": \"integer\"\n" +
" },\n" +
" \"stock\":{\n" +
" \"type\": \"integer\"\n" +
" },\n" +
" \"image\":{\n" +
" \"type\": \"keyword\",\n" +
" \"index\": false\n" +
" },\n" +
" \"category\":{\n" +
" \"type\": \"keyword\"\n" +
" },\n" +
" \"brand\":{\n" +
" \"type\": \"keyword\"\n" +
" },\n" +
" \"sold\":{\n" +
" \"type\": \"integer\"\n" +
" },\n" +
" \"commentCount\":{\n" +
" \"type\": \"integer\"\n" +
" },\n" +
" \"isAD\":{\n" +
" \"type\": \"boolean\"\n" +
" },\n" +
" \"updateTime\":{\n" +
" \"type\": \"date\"\n" +
" }\n" +
" }\n" +
" }\n" +
"}";
2.删除索引库
删除索引库的请求非常简单:
DELETE /hotel
与创建索引库相比:
- 请求方式从PUT变为DELTE
- 请求路径不变
- 无请求参数
所以代码的差异,注意体现在Request对象上。流程如下:
- 1)创建Request对象。这次是DeleteIndexRequest对象
- 2)准备参数。这里是无参,因此省略
- 3)发送请求。改用delete方法
在item-service
中的IndexTest测试类中,编写单元测试,实现删除索引:
@Test
void testDeleteIndex() throws IOException {
// 1.创建Request对象
DeleteIndexRequest request = new DeleteIndexRequest("items");
// 2.发送请求
client.indices().delete(request, RequestOptions.DEFAULT);
}
3.判断索引库是否存在
判断索引库是否存在,本质就是查询,对应的请求语句是:
GET /hotel
因此与删除的Java代码流程是类似的,流程如下:
- 1)创建Request对象。这次是GetIndexRequest对象
- 2)准备参数。这里是无参,直接省略
- 3)发送请求。改用exists方法
@Test
void testExistsIndex() throws IOException {
// 1.创建Request对象
GetIndexRequest request = new GetIndexRequest("items");
// 2.发送请求
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
// 3.输出
System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}
4.总结
JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()
方法来获取索引库的操作对象。
索引库操作的基本步骤:
- 初始化
RestHighLevelClient
- 创建XxxIndexRequest。XXX是
Create
、Get
、Delete
- 准备请求参数(
Create
时需要,其它是无参,可以省略) - 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete
5.1.新增文档
我们需要将数据库中的商品信息导入elasticsearch中,而不是造假数据了。
5.1.1.实体类
索引库结构与数据库结构还存在一些差异,因此我们要定义一个索引库结构对应的实体。
在hm-service模块的com.hmall.item.domain.dto包中定义一个新的DTO:
package com.hmall.item.domain.po;
import io.swagger.annotations.ApiModel;
import io.swagger.annotations.ApiModelProperty;
import lombok.Data;
import java.time.LocalDateTime;
@Data
@ApiModel(description = "索引库实体")
public class ItemDoc{
@ApiModelProperty("商品id")
private String id;
@ApiModelProperty("商品名称")
private String name;
@ApiModelProperty("价格(分)")
private Integer price;
@ApiModelProperty("商品图片")
private String image;
@ApiModelProperty("类目名称")
private String category;
@ApiModelProperty("品牌名称")
private String brand;
@ApiModelProperty("销量")
private Integer sold;
@ApiModelProperty("评论数")
private Integer commentCount;
@ApiModelProperty("是否是推广广告,true/false")
private Boolean isAD;
@ApiModelProperty("更新时间")
private LocalDateTime updateTime;
}
5.1.2.API语法
新增文档的请求语法如下:
POST /{索引库名}/_doc/1
{
"name": "Jack",
"age": 21
}
对应的JavaAPI如下:
可以看到与索引库操作的API非常类似,同样是三步走:
- 1)创建Request对象,这里是IndexRequest,因为添加文档就是创建倒排索引的过程
- 2)准备请求参数,本例中就是Json文档
- 3)发送请求
变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。
5.1.3.完整代码
我们导入商品数据,除了参考API模板“三步走”以外,还需要做几点准备工作:
- 商品数据来自于数据库,我们需要先查询出来,得到Item对象
- Item对象需要转为ItemDoc对象
- ItemDTO需要序列化为json格式
因此,代码整体步骤如下:
- 1)根据id查询商品数据Item
- 2)将Item封装为ItemDoc
- 3)将ItemDoc序列化为JSON
- 4)创建IndexRequest,指定索引库名和id
- 5)准备请求参数,也就是JSON文档
- 6)发送请求
在item-service的DocumentTest测试类中,编写单元测试:
package com.heima.item.es;
import cn.hutool.core.bean.BeanUtil;
import cn.hutool.json.JSONUtil;
import com.hmall.item.ItemApplication;
import com.hmall.item.domain.po.Item;
import com.hmall.item.domain.po.ItemDoc;
import com.hmall.item.service.IItemService;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import java.io.IOException;
@SpringBootTest(
classes = ItemApplication.class
,properties = "spring.profiles.active=local")
public class DocumentTest {
private RestHighLevelClient client;
@Autowired
private IItemService itemService;
@BeforeEach
void setUp() {
this.client = new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://192.168.88.130:9200")
));
}
@Test
void testConnect() {
System.out.println(client);
}
@AfterEach
void tearDown() throws IOException {
this.client.close();
}
@Test
void testAddDocument() throws IOException {
// 1.根据id查询商品数据
Item item = itemService.getById(100002644680L);
// 2.转换为文档类型
ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
// 3.将ItemDTO转json
String doc = JSONUtil.toJsonStr(itemDoc);
// 1.准备Request对象
IndexRequest request = new IndexRequest("items").id(itemDoc.getId());
// 2.准备Json文档
request.source(doc, XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
}
}
GET /items/_doc/100002644680
5.2.查询文档
我们以根据id查询文档为例
5.2.1.语法说明
查询的请求语句如下:
GET /{索引库名}/_doc/{id}
与之前的流程类似,代码大概分2步:
- 创建Request对象
准备请求参数,这里是无参,直接省略- 发送请求
不过查询的目的是得到结果,解析为ItemDTO,还要再加一步对结果的解析。示例代码如下:
可以看到,响应结果是一个JSON,其中文档放在一个_source
属性中,因此解析就是拿到_source
,反序列化为Java对象即可。
其它代码与之前类似,流程如下:
- 1)准备Request对象。这次是查询,所以是
GetRequest
- 2)发送请求,得到结果。因为是查询,这里调用
client.get()
方法 - 3)解析结果,就是对JSON做反序列化
5.2.2.完整代码
在item-service
的DocumentTest
测试类中,编写单元测试:
@Test
void testGetDocumentById() throws IOException {
// 1.准备Request对象
GetRequest request = new GetRequest("items").id("100002644680");
// 2.发送请求
GetResponse response = client.get(request, RequestOptions.DEFAULT);
// 3.获取响应结果中的source
String json = response.getSourceAsString();
ItemDoc itemDoc = JSONUtil.toBean(json, ItemDoc.class);
System.out.println("itemDoc= " + ItemDoc);
}
5.4.修改文档
修改我们讲过两种方式:
- 全量修改:本质是先根据id删除,再新增
- 局部修改:修改文档中的指定字段值
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
- 如果新增时,ID已经存在,则修改
- 如果新增时,ID不存在,则新增
/**
* 测试全量更新
*/
@Test
void testUpdateDocument() throws IOException {
// 1.根据id查询商品数据
Item item = itemService.getById(100002644680L);
// 2.转换为文档类型
ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
itemDoc.setPrice(9999);
// 3.将ItemDTO转json
String doc = JSONUtil.toJsonStr(itemDoc);
// 1.准备Request对象
IndexRequest request = new IndexRequest("items").id(itemDoc.getId());
// 2.准备Json文档
request.source(doc, XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
}
这里不再赘述,我们主要关注局部修改的API即可。
5.4.1.语法说明
局部修改的请求语法如下:
POST /{索引库名}/_update/{id}
{
"doc": {
"字段名": "字段值",
"字段名": "字段值"
}
}
代码示例如图:
与之前类似,也是三步走:
- 1)准备Request对象。这次是修改,所以是UpdateRequest
- 2)准备参数。也就是JSON文档,里面包含要修改的字段
- 3)更新文档。这里调用client.update()方法
5.4.2.完整代码
在item-service的DocumentTest测试类中,编写单元测试:
@Test
void testUpdateDocument() throws IOException {
// 1.准备Request
UpdateRequest request = new UpdateRequest("items", "100002644680");
// 2.准备请求参数
request.doc(
"price", 58800,
"commentCount", 1
);
// 3.发送请求
client.update(request, RequestOptions.DEFAULT);
}
5.5.批量导入文档
在之前的案例中,我们都是操作单个文档。而数据库中的商品数据实际会达到数十万条,某些项目中可能达到数百万条。
我们如果要将这些数据导入索引库,肯定不能逐条导入,而是采用批处理方案。常见的方案有:
- 利用Logstash批量导入
- 需要安装Logstash
- 对数据的再加工能力较弱
- 无需编码,但要学习编写Logstash导入配置
- 利用JavaAPI批量导入
- 需要编码,但基于JavaAPI,学习成本低
- 更加灵活,可以任意对数据做再加工处理后写入索引库
接下来,我们就学习下如何利用JavaAPI实现批量文档导入。
5.5.1.语法说明
批处理与前面讲的文档的CRUD步骤基本一致:
- 创建Request,但这次用的是
BulkRequest
- 准备请求参数
- 发送请求,这次要用到
client.bulk()
方法
BulkRequest
本身其实并没有请求参数,其本质就是将多个普通的CRUD请求组合在一起发送。例如:
- 批量新增文档,就是给每个文档创建一个
IndexRequest
请求,然后封装到BulkRequest
中,一起发出。 - 批量删除,就是创建N个
DeleteRequest
请求,然后封装到BulkRequest
,一起发出
因此BulkRequest
中提供了add
方法,用以添加其它CRUD的请求:
可以看到,能添加的请求有:
IndexRequest
,也就是新增UpdateRequest
,也就是修改DeleteRequest
,也就是删除
因此Bulk中添加了多个IndexRequest
,就是批量新增功能了。示例:
@Test
void testBulk() throws IOException {
// 1.创建Request
BulkRequest request = new BulkRequest();
// 2.准备请求参数
request.add(new IndexRequest("items").id("1").source("json doc1", XContentType.JSON));
request.add(new IndexRequest("items").id("2").source("json doc2", XContentType.JSON));
// 3.发送请求
client.bulk(request, RequestOptions.DEFAULT);
}
5.5.2.完整代码
当我们要导入商品数据时,由于商品数量达到数十万,因此不可能一次性全部导入。建议采用循环遍历方式,每次导入1000条左右的数据。
item-service
的DocumentTest
测试类中,编写单元测试:
@Test
void testLoadItemDocs() throws IOException {
// 分页查询商品数据
int pageNo = 1;
int size = 1000;
while (true) {
Page<Item> page = itemService.lambdaQuery().eq(Item::getStatus, 1).page(new Page<Item>(pageNo, size));
// 非空校验
List<Item> items = page.getRecords();
if (CollUtils.isEmpty(items)) {
return;
}
log.info("加载第{}页数据,共{}条", pageNo, items.size());
// 1.创建Request
BulkRequest request = new BulkRequest("items");
// 2.准备参数,添加多个新增的Request
for (Item item : items) {
// 2.1.转换为文档类型ItemDTO
ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
// 2.2.创建新增文档的Request对象
request.add(new IndexRequest()
.id(itemDoc.getId())
.source(JSONUtil.toJsonStr(itemDoc), XContentType.JSON));
}
// 3.发送请求
client.bulk(request, RequestOptions.DEFAULT);
// 翻页
pageNo++;
}
}
GET /items/_count
和数据库的数量基本一致
5.6.小结
文档操作的基本步骤:
- 初始化
RestHighLevelClient
- 创建XxxRequest。
- XXX是
Index、Get、Update、Delete、Bulk
- XXX是
- 准备参数(
Index、Update、Bulk
时需要) - 发送请求。
- 调用
RestHighLevelClient#.xxx()
方法,xxx是index、get、update、delete、bulk
- 调用
- 解析结果(
Get
时需要)
1.DSL查询
Elasticsearch的查询可以分为两大类:
- 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。
- 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。
在查询以后,还可以对查询的结果做处理,包括:
- 排序:按照1个或多个字段值做排序
- 分页:根据from和size做分页,类似MySQL
- 高亮:对搜索结果中的关键字添加特殊样式,使其更加醒目
- 聚合:对搜索结果做数据统计以形成报表
1.1.快速入门
我们依然在Kibana的DevTools中学习查询的DSL语法。首先来看查询的语法结构:
GET /{索引库名}/_search
{
"query": {
"查询类型": {
// .. 查询条件
}
}
}
说明:
GET /{索引库名}/_search
:其中的_search是固定路径,不能修改
例如,我们以最简单的无条件查询为例,无条件查询的类型是:match_all,因此其查询语句如下:
GET /items/_search
{
"query": {
"match_all": {
}
}
}
由于match_all无条件,所以条件位置不写即可。
执行结果如下:
你会发现虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。
1.2 叶子查询
叶子查询的类型也可以做进一步细分:官方进行分类
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/query-dsl.html
这里列举一些常见的,例如:
全文检索查询(Full Text Queries)
:利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:- match:
- multi_match
精确查询(Term-level queries)
:不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:- ids
- term
- range
地理坐标查询
:用于搜索地理位置,搜索方式很多,例如:- geo_bounding_box:按矩形搜索
- geo_distance:按点和半径搜索
- …略
1.2.1.全文检索查询
全文检索的种类也很多,详情可以参考官方文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/full-text-queries.html
以全文检索中的match
为例,最好使用text类型,语法如下:
GET /{索引库名}/_search
{
"query": {
"match": {
"字段名": "搜索条件"
}
}
}
示例:
GET /items/_search
{
"query": {
"match": {
"name": "华为荣耀"
}
}
}
与match类似的还有multi_match
,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:
GET /{索引库名}/_search
{
"query": {
"multi_match": {
"query": "搜索条件",
"fields": ["字段1", "字段2"]
}
}
}
示例:
GET /items/_search
{
"query": {
"multi_match": {
"query": "华为",
"fields": ["name","brand"]
}
}
}
source分数代表的使当前记录的匹配度
1.2.2.精确查询
精确查询,英文是Term-level query
,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword
、数值、日期、boolean
类型的字段,不要查询text
字段。例如:
- id
- price
- 城市
- 地名
- 人名
等等,作为一个整体才有含义的字段。
详情可以查看官方文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/term-level-queries.html
以term
查询为例,其语法如下:
GET /{索引库名}/_search
{
"query": {
"term": {
"字段名": {
"value": "搜索条件"
}
}
}
}
示例:
GET /items/_search
{
"query": {
"term": {
"brand.keyword": {
"value": "小米"
}
}
}
}
为什么加了keyword能够查询到,但是不加反而查询不到?
这种情况出现的原因可能有以下几点:
-
字段映射设置问题:
- 你的
brand
字段可能配置了特殊的分析器,导致分词后无法匹配你想要的内容 - 而
.keyword
是不分析的精确字段,保留了完整文本
- 你的
-
中文分词特殊性:
- Elasticsearch默认使用标准分析器,对中文的分词效果不佳
- “小米"这样的中文词可能被分成了单个字符"小"和"米”
- 如果你搜索完整的"小米",可能与分词后的结果不匹配
-
查询条件差异:
term
查询对非keyword字段时,会查找分词后的精确词条- 如果分词结果与搜索词不一致,就找不到结果
-
索引数据特性:
- 数据写入时,可能经过了某种处理或转换
.keyword
保留了原始值
解决方法:
- 为中文内容配置合适的中文分析器(如IK分词器)
- 使用
match
查询代替term
查询(最佳解决方案,因为text类型基本不使用keyword关键字查询
) - 检查字段映射配置
当你输入的搜索条件不是词条,而是短语时,由于不做分词,你反而搜索不到:
再来看下range
查询,语法如下:
GET /{索引库名}/_search
{
"query": {
"range": {
"字段名": {
"gte": {最小值},
"lte": {最大值}
}
}
}
}
range
是范围查询,对于范围筛选的关键字有:
gte
:大于等于gt
:大于lte
:小于等于lt
:小于
示例:
GET /items/_search
{
"query": {
"range": {
"price": {
"gte": 100,
"lte": 500
}
}
}
}
1.3.复合查询
复合查询大致可以分为两类:
- 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如
- bool
- 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:
- function_score
- dis_max
其它复合查询及相关语法可以参考官方文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/compound-queries.html
1.3.1.算分函数查询(选讲)
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score)
,返回结果时按照分值降序排列。
例如,我们搜索 “手机”,结果如下:
从elasticsearch5.1开始,采用的相关性打分算法是BM25算法,公式如下:
基于这套公式,就可以判断出某个文档与用户搜索的关键字之间的关联度,还是比较准确的。但是,在实际业务需求中,常常会有竞价排名的功能。不是相关度越高排名越靠前,而是掏的钱多的排名靠前。
例如在百度中搜索Java培训,排名靠前的就是广告推广:
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
基本语法:
function score 查询中包含四部分内容:
原始查询条件
:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)过滤条件
:filter部分,符合该条件的文档才会重新算分算分函数
:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数- weight:函数结果是常量
- field_value_factor:以文档中的某个字段值作为函数结果
- random_score:以随机数作为函数结果
- script_score:自定义算分函数算法
运算模式
:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:- multiply:相乘
- replace:用function score替换query score
- 其它,例如:sum、avg、max、min
function score的运行流程如下:
- 1)根据
原始条件
查询搜索文档,并且计算相关性算分,称为原始算分
(query score) - 2)根据
过滤条件
,过滤文档 - 3)符合过滤条件的文档,基于
算分函数
运算,得到函数算分
(function score) - 4)将
原始算分(query score)和函数算分(function score)基于运算模式做运算
,得到最终结果,作为相关性算分。
因此,其中的关键点是:
- 过滤条件:决定哪些文档的算分被修改
- 算分函数:决定函数算分的算法
- 运算模式:决定最终算分结果
示例:给IPhone这个品牌的手机算分提高十倍,分析如下:
- 过滤条件:品牌必须为IPhone
- 算分函数:常量weight,值为10
- 算分模式:相乘multiply
对应代码如下:
GET /hotel/_search
{
"query": {
"function_score": {
"query": { .... }, // 原始查询,可以是任意条件
"functions": [ // 算分函数
{
"filter": { // 满足的条件,品牌必须是Iphone
"term": {
"brand": "Iphone"
}
},
"weight": 10 // 算分权重为2
}
],
"boost_mode": "multipy" // 加权模式,求乘积
}
}
}
GET /items/_search
{
"query": {
"function_score": {
"query": {
"match": {
"name": "手机"
}
},
"functions": [
{
"filter": {
"term": {
"brand": "华为"
}
},
"weight": 10
}
],
"boost_mode": "multiply"
}
}
}
1.3.2.bool查询
bool查询,即布尔查询
。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:
- must:必须匹配每个子查询,类似“与”
- should:选择性匹配子查询,类似“或”
- must_not:必须不匹配,
不参与算分
,类似“非” - filter:必须匹配,
不参与算分
bool查询的语法如下:
brand 的类型是text,会被分词器拆解,使用keyword关键字,则保留原本的值
GET /items/_search
{
"query": {
"bool": {
"must": [
{"match": {"name": "手机"}}
],
"should": [
{"term": {"brand.keyword": { "value": "vivo" }}},
{"term": {"brand.keyword": { "value": "小米" }}}
],
"must_not": [
{"range": {"price": {"gte": 2500}}}
],
"filter": [
{"range": {"price": {"lte": 1000}}}
]
}
}
}
出于性能考虑,与搜索关键字无关的查询尽量采用must_not或filter逻辑运算,避免参与相关性算分。
例如黑马商城的搜索页面:
其中输入框的搜索条件肯定要参与相关性算分,可以采用match。但是价格范围过滤、品牌过滤、分类过滤等尽量采用filter,不要参与相关性算分。
比如,我们要搜索手机,但品牌必须是华为,价格必须是900~1599,那么可以这样写:
GET /items/_search
{
"query": {
"bool": {
"must": [
{"match": {"name": "手机"}}
],
"filter": [
{"term": {"brand.keyword": { "value": "华为" }}},
{"range": {"price": {"gte": 90000, "lt": 159900}}}
]
}
}
}
1.4.排序
elasticsearch默认是根据相关度算分(_score
)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword
类型、数值类型、地理坐标类型、日期类型等。
详细说明可以参考官方文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/sort-search-results.html
语法说明:
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"排序字段": {
"order": "排序方式asc和desc"
}
}
]
}
示例,我们按照商品价格排序:
GET /items/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"price": {
"order": "desc"
}
}
]
}
1.5.分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。
1.5.1.基础分页
elasticsearch中通过修改from、size参数来控制要返回的分页结果:
from
:从第几个文档开始size
:总共查询几个文档
类似于mysql中的limit ?, ?
官方文档如下:
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html
语法:
GET /items/_search
{
"query": {
"match_all": {}
},
"from": 0, // 分页开始的位置,默认为0
"size": 10, // 每页文档数量,默认10
"sort": [
{
"price": {
"order": "desc"
}
}
]
}
1.5.2.深度分页
elasticsearch的数据一般会采用分片存储
,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。
比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。那么分页查询的条件如下:
GET /items/_search
{
"from": 990, // 从第990条开始查询
"size": 10, // 每页查询10条
"sort": [
{
"price": "asc"
}
]
}
从语句来分析,要查询第990~1000名的数据。
从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?
要知道每一片的数据都不一样,第1片上的第900-1000,在另1个节点上并不一定依然是900-1000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990~1000的数据即可。
如图:
试想一下,假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?如果查询的分页深度更深呢,需要一次检索的数据岂不是更多?
由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。
因此elasticsearch会禁止from+ size 超过10000的请求
。
针对深度分页,elasticsearch提供了两种解决方案:
- search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
- scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。
详情见文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html
总结:
大多数情况下,我们采用普通分页就可以了。查看百度、京东等网站,会发现其分页都有限> 制。例如百度最多支持77页,每页不足20条。京东最多100页,每页最多60条。
因此,一般我们采用限制分页深度
的方式即可,无需实现深度分页。
1.6.高亮
1.6.1.高亮原理
什么是高亮显示呢?
我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:
观察页面源码,你会发现两件事情:
- 高亮词条都被加了
<em>标签
- 标签都添加了红色样式
css样式肯定是前端实现页面的时候写好的,但是前端编写页面的时候是不知道页面要展示什么数据的,不可能给数据加标签。而服务端实现搜索功能,要是有elasticsearch做分词搜索,是知道哪些词条需要高亮的。
因此词条的高亮标签肯定是由服务端提供数据的时候已经加上的
。
因此实现高亮的思路就是:
- 用户输入搜索关键字搜索数据
- 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加
html
标签 - 前端提前给约定好的
html
标签添加CSS
样式
1.6.2.实现高亮
事实上elasticsearch已经提供了给搜索关键字加标签的语法,无需我们自己编码。
基本语法如下:
GET /{索引库名}/_search
{
"query": {
"match": {
"搜索字段": "搜索关键字"
}
},
"highlight": {
"fields": {
"高亮字段名称": {
"pre_tags": "<em>",
"post_tags": "</em>"
}
}
}
}
注意:
- 搜索必须有查询条件,而且是全文检索类型的查询条件,例如
match
- 参与高亮的字段必须是
text
类型的字段- 默认情况下参与高亮的字段要与搜索字段一致,除非添加:
required_field_match=false
示例:
GET /items/_search
{
"query": {
"match": {
"name": "电视"
}
}
, "highlight": {
"fields": {
"name": {
"pre_tags": "<em>",
"post_tags": "</em>"
}
}
}
}
1.7.总结
查询的DSL是一个大的JSON对象,包含下列属性:
- query:查询条件
- from和size:分页条件
- sort:排序条件
- highlight:高亮条件
示例:
搜索的完整语法:
2.RestClient查询
文档的查询依然使用昨天学习的 RestHighLevelClient
对象,查询的基本步骤如下:
- 1)创建
request
对象,这次是搜索,所以是SearchRequest
- 2)准备请求参数,也就是查询DSL对应的JSON参数
- 3)发起请求
- 4)解析响应,响应结果相对复杂,需要逐层解析
2.1.快速入门
之前说过,由于Elasticsearch对外暴露的接口都是Restful风格的接口,因此JavaAPI调用就是在发送Http请求。而我们核心要做的就是利用Java代码组织请求参数,解析响应结果
。
这个参数的格式完全参考DSL查询语句的JSON结构,因此我们在学习的过程中,会不断的把JavaAPI与DSL语句对比。大家在学习记忆的过程中,也应该这样对比学习。
2.1.1.发送请求
首先以match_all
查询为例,其DSL和JavaAPI的对比如图:
代码解读:
- 第一步,创建
SearchRequest
对象,指定索引库名 - 第二步,利用
request.source()
构建DSL,DSL中可以包含查询、分页、排序、高亮等 query()
:代表查询条件,利用QueryBuilders.matchAllQuery()
构建一个match_all
查询的DSL- 第三步,利用
client.search()
发送请求,得到响应
这里关键的API有两个,一个是request.source()
,它构建的就是DSL中的完整JSON参数。其中包含了query
、sort
、from
、size
、highlight
等所有功能:
另一个是QueryBuilders
,其中包含了我们学习过的各种叶子查询、复合查询
等:
2.1.2.解析响应结果
在发送请求以后,得到了响应结果SearchResponse
,这个类的结构与我们在kibana中看到的响应结果JSON结构完全一致:
{
"took" : 0,
"timed_out" : false,
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "heima",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"info" : "Java讲师",
"name" : "赵云"
}
}
]
}
}
因此,我们解析SearchResponse
的代码就是在解析这个JSON结果,对比如下:
代码解读:
elasticsearch返回的结果是一个JSON字符串,结构包含:
hits
:命中的结果total
:总条数,其中的value是具体的总条数值max_score
:所有结果中得分最高的文档的相关性算分hits
:搜索结果的文档数组,其中的每个文档都是一个json对象_source
:文档中的原始数据,也是json对象
因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:
SearchHits
:通过response.getHits()
获取,就是JSON中的最外层的hits
,代表命中的结果SearchHits#getTotalHits().value
:获取总条数信息SearchHits#getHits()
:获取SearchHit
数组,也就是文档数组SearchHit#getSourceAsString()
:获取文档结果中的_source
,也就是原始的json
文档数据
2.1.3.总结
文档搜索的基本步骤是:
- 创建
SearchRequest
对象 - 准备
request.source()
,也就是DSL。 QueryBuilders
来构建查询条件- 传入
request.source()
的query()
方法 - 发送请求,得到结果
- 解析结果(参考JSON结果,从外到内,逐层解析)
完整代码如下:
@Test
void testMatchAll() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.matchAllQuery());
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
private void handleResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
// 1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 2.遍历结果数组
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
// 3.得到_source,也就是原始json文档
String source = hit.getSourceAsString();
// 4.反序列化并打印
ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
System.out.println(item);
}
}
2.2.叶子查询
所有的查询条件都是由QueryBuilders来构建的,叶子查询也不例外。因此整套代码中变化的部分仅仅是query条件构造的方式,其它不动。
例如match
查询:
@Test
void testMatch() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
再比如multi_match
查询:
@Test
void testMultiMatch() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.multiMatchQuery("脱脂牛奶", "name", "category"));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
还有range
查询:
@Test
void testRange() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
还有term
查询:
@Test
void testTerm() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
request.source().query(QueryBuilders.termQuery("brand", "vivo"));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
2.3.复合查询
复合查询也是由QueryBuilders
来构建,我们以bool查询
为例,DSL和JavaAPI的对比如图:
完整代码如下:
@Test
void testBool() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
// 2.1.准备bool查询
BoolQueryBuilder bool = QueryBuilders.boolQuery();
// 2.2.关键字搜索
bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 2.3.品牌过滤
// bool.filter(QueryBuilders.termQuery("brand", "德亚"));
// 2.4.价格过滤
bool.filter(QueryBuilders.rangeQuery("price").lte(30000));
request.source().query(bool);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
2.4.排序和分页
之前说过,requeset.source()
就是整个请求JSON参数,所以排序、分页都是基于这个来设置,其DSL和JavaAPI的对比如下:
完整示例代码:
/**
* 测试分页和排序
* @throws IOException
*/
@Test
void testPageAndSort() throws IOException {
int pageNo = 1, pageSize = 5;
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
// 2.1.搜索条件参数
request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 2.2.排序参数
request.source().sort("price", SortOrder.DESC);
// 2.3.分页参数
request.source().from((pageNo - 1) * pageSize).size(pageSize);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
2.5.高亮
高亮查询与前面的查询有两点不同:
- 条件同样是在
request.source()
中指定,只不过高亮条件要基于HighlightBuilder
来构造 - 高亮响应结果与搜索的文档结果不在一起,需要单独解析
首先来看高亮条件构造,其DSL和JavaAPI的对比如图:
示例代码如下:
@Test
void testHighlight() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.组织请求参数
// 2.1.query条件
request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
// 2.2.高亮条件
request.source().highlighter(
SearchSourceBuilder.highlight()
.field("name")
.preTags("<em>")
.postTags("</em>")
);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);
}
再来看结果解析,文档解析的部分不变,主要是高亮内容需要单独解析出来,其DSL和JavaAPI的对比如图:
代码解读:
- 第3、4步:从结果中获取
_source
。hit.getSourceAsString
(),这部分是非高亮结果,json字符串。还需要反序列为ItemDoc对象 - 第5步:获取高亮结果。hit.
getHighlightFields
(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值 - 第5.1步:从
Map
中根据高亮字段名称,获取高亮字段值对象HighlightField
- 第5.2步:从
HighlightField
中获取Fragments
,并且转为字符串。这部分就是真正的高亮字符串了 - 最后:用高亮的结果替换
ItemDoc
中的非高亮结果
完整代码如下:
private void handleResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
// 1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 2.遍历结果数组
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
// 3.得到_source,也就是原始json文档
String source = hit.getSourceAsString();
// 4.反序列化
ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
// 5.获取高亮结果
Map<String, HighlightField> hfs = hit.getHighlightFields();
if (CollUtils.isNotEmpty(hfs)) {
// 5.1.有高亮结果,获取name的高亮结果
HighlightField hf = hfs.get("name");
if (hf != null) {
// 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
String hfName = hf.getFragments()[0].string();
item.setName(hfName);
}
}
System.out.println(item);
}
}
效果
3.聚合
聚合分类 (aggregations)
参与聚合的字段必须是Keyword、数值、日期、布尔的类型的字段
聚合可以实现对文档数据的统计、分析、运算。聚合常见的有三类:
桶(Bucket)聚合
用来对文档做分组
- TermAggregation: 按照文档字段值分组
- Date Histogram: 按照日期阶梯分组,例如一周为一组,或者一月为一组
度量(Metric)聚合
用以计算一些值,比如:最大值、最小值、平均值等
- Avg: 求平均值
- Max: 求最大值
- Min: 求最小值
- Stats: 同时求max、min、avg、sum等
管道(pipeline)聚合
其它聚合的结果为基础做聚合
DSL聚合
我们要统计所有商品中共有哪些商品分类,其实就是以分类(category)字段对数据分组。category值一样的放在同一组,属于Bucket聚合中的Term聚合。
外层的size设置为0,代表不返回term结果,只返回聚合结果
3.1.1.Bucket聚合
例如我们要统计所有商品中共有哪些商品分类,其实就是以分类(category)字段对数据分组。category值一样的放在同一组,属于Bucket
聚合中的Term
聚合。
基本语法如下:
GET /items/_search
{
"size": 0,
"aggs": {
"category_agg": {
"terms": {
"field": "category.keyword",
"size": 20
}
}
}
}
语法说明:
size
:设置size为0,就是每页查0条,则结果中就不包含文档,只包含聚合aggs
:定义聚合category_agg
:聚合名称,自定义,但不能重复terms
:聚合的类型,按分类聚合,所以用termfield
:参与聚合的字段名称size
:希望返回的聚合结果的最大数量
来看下查询的结果:
3.1.2.带条件聚合
默认情况下,Bucket聚合是对索引库的所有文档做聚合,例如我们统计商品中所有的品牌,结果如下:
可以看到统计出的品牌非常多。
但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
例如,我想知道价格高于3000元的手机品牌有哪些,该怎么统计呢?
我们需要从需求中分析出搜索查询的条件和聚合的目标:
- 搜索查询条件:
- 价格高于3000
- 必须是手机
- 聚合目标:统计的是品牌,肯定是对brand字段做term聚合
语法如下:
GET /items/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"category.keyword": "手机"
}
},
{
"range": {
"price": {
"gte": 300000
}
}
}
]
}
},
"size": 0,
"aggs": {
"cate_agg": {
"terms": {
"field": "brand.keyword",
"size": 2
}
}
}
}
聚合结果如下:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 11,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"cate_agg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 2,
"buckets" : [
{
"key" : "Apple",
"doc_count" : 7
},
{
"key" : "华为",
"doc_count" : 2
}
]
}
}
}
可以看到,结果中只剩下2个品牌了。
3.1.3.Metric聚合
上节课,我们统计了价格高于3000的手机品牌,形成了一个个桶。现在我们需要对桶内的商品做运算,获取每个品牌价格的最小值、最大值、平均值。
这就要用到Metric聚合了,例如stat聚合,就可以同时获取min、max、avg等结果。
语法如下:
GET /items/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"category.keyword": "手机"
}
},
{
"range": {
"price": {
"gte": 300000
}
}
}
]
}
},
"size": 0,
"aggs": {
"brand_agg": {
"terms": {
"field": "brand.keyword",
"size": 2
},
"aggs": {
"stats_meric": {
"stats": {
"field": "price"
}
}
}
}
}
}
query部分就不说了,我们重点解读聚合部分语法。
可以看到我们在brand_agg聚合的内部,我们新加了一个aggs参数。这个聚合就是brand_agg的子聚合,会对brand_agg形成的每个桶中的文档分别统计。
- stats_meric:聚合名称
- stats:聚合类型,stats是metric聚合的一种
- field:聚合字段,这里选择price,统计价格
- stats:聚合类型,stats是metric聚合的一种
由于stats是对brand_agg形成的每个品牌桶内文档分别做统计,因此每个品牌都会统计出自己的价格最小、最大、平均值。
结果如下:
另外,我们还可以让聚合按照每个品牌的价格平均值排序:
3.1.4.总结
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
3.2.RestClient实现聚合
可以看到在DSL中,aggs聚合条件与query条件是同一级别,都属于查询JSON参数。因此依然是利用request.source()方法来设置。
不过聚合条件的要利用AggregationBuilders这个工具类来构造。DSL与JavaAPI的语法对比如下:
聚合结果与搜索文档同一级别,因此需要单独获取和解析。具体解析语法如下:
完整代码如下:分组字段要选择keyword,如果不是,则使用keyword关键字
@Test
void testAgg() throws IOException {
// 1.创建Request
SearchRequest request = new SearchRequest("items");
// 2.准备请求参数
BoolQueryBuilder bool = QueryBuilders.boolQuery()
.filter(QueryBuilders.termQuery("category.keyword", "手机"))
.filter(QueryBuilders.rangeQuery("price").gte(300000));
request.source().query(bool).size(0);
// 3.聚合参数
request.source().aggregation(
AggregationBuilders.terms("brand_agg").field("brand.keyword").size(5)
);
// 4.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 5.解析聚合结果
Aggregations aggregations = response.getAggregations();
// 5.1.获取品牌聚合
Terms brandTerms = aggregations.get("brand_agg");
// 5.2.获取聚合中的桶
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 5.3.遍历桶内数据
for (Terms.Bucket bucket : buckets) {
// 5.4.获取桶内key
String brand = bucket.getKeyAsString();
System.out.print("brand = " + brand);
long count = bucket.getDocCount();
System.out.println("; count = " + count);
}
}