Tensorflow2 的常用函数(二)

11. tf.data.Dataset.from_tensor_slices()数据集切片

该函数是dataset核心函数之一,它的作用是把给定的元组、列表和张量等数据进行特征切片。切片的范围是从最外层维度开始的。如果有多个特征进行组合,那么一次切片是把每个组合的最外维度的数据切开,分成一组一组的。

import tensorflow as tf

features = tf.constant([12, 23, 10, 17])
labels = tf.constant([0, 1, 1, 0])
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
for element in dataset:
    print(element)

结果:

(<tf.Tensor: shape=(), dtype=int32, numpy=12>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: shape=(), dtype=int32, numpy=23>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=10>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=17>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)

也就是说,12-0 23-1 10-1 17-0 分别对应。在制作和使用数据集的时候,常常用此函数将特征标签进行组合。

12. tf.GradientTape() 求导

梯度下降求导的核心函数。 这里

import tensorflow as tf

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值