https://codeforc.es/contest/1197/problem/D
dp[i][j] 位置 余数0-m-1
注意 dp[0][0]=0花费
dp[0][j] j在1-m-1 -inf
余数从0-1 -inf
m-1-0 0ll
3e5*10 的dp
const int maxn=3e5+5;
ll n,m,k;
ll a[maxn],dp[maxn][15];
int main()
{
cin>>n>>m>>k;
rep(i,1,n){
cin>>a[i];
}
rep(i,1,m)
dp[0][i]=-1e10;
rep(i,1,n){
rep(j,1,m){
if(j==1)
dp[i][1]=max(a[i]-k,dp[i-1][m]+a[i]-k);
else
dp[i][j]=dp[i-1][j-1]+a[i];
}
}
ll ans=0;
rep(i,1,n){
rep(j,1,m){
ans=max(ans,dp[i][j]);
}
}
cout<<ans<<endl;
return 0;
}
#include <iostream>
using namespace std;
const int MAXN = 3e5 + 10, MAXM = 15;
int n, m, k, a[MAXN];
long long ps[MAXN], mx[MAXM], dp[MAXN], ans;
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= n; i++)
cin >> a[i], ps[i] = a[i];
for (int i = 1; i <= n; i++)
ps[i] += ps[i - 1];
for (int i = 0; i < m; i++)
mx[i] = -1e18;
mx[0] = -k;
for (int i = 1; i <= n; i++) {
for (int j = 0; j < m; j++)
dp[i] = max(dp[i], mx[j] + ps[i]);
mx[i % m] = max(mx[i % m], -ps[i]);
mx[i % m] -= k;
ans = max(ans, dp[i]);
for (int j = 0; j < m; j++)
cout << mx[j] << ' ';
cout << '\n';
}
for (int i = 0; i < n; i++)
cout << dp[i] << ' ';
cout << '\n';
cout << ans << '\n';
}
int a[300000];
long long sum[300001];
int main()
{
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
long long ans = 0;
for (int j = 0; j < m; j++) {
sum[0] = 0;
for (int i = 0; i < n; i++)
sum[i+1] = sum[i] + a[i] - (i % m == j ? k : 0);
long long Max = LLONG_MIN;
for (int i = n - 1; i >= 0; i--) {
Max = max(Max, sum[i+1]);
if (i % m == j)
ans = max(ans, Max - sum[i]);
}
}
cout << ans << '\n';
return 0;
}
ll a[maxn];
ll dp[maxn][15]; //位置 余数
ll n,m,k;
int main(){
IO;
ll ans=0;
cin>>n>>m>>k;
rep(i,1,n){
cin>>a[i];
}
if(m==1){ //商每隔m=1就+1 就多-k
rep(i,1,n){
a[i]=a[i]-k;
}
ll sum=0;
for(int i=1;i<=n;i++){
sum+=a[i];
if(sum<0)
sum=0;
else
ans=max(ans,sum);
}
cout<<ans<<endl;
return 0;
}
for(int j=1;j<m;j++)
dp[0][j]=-inf;
dp[0][0]=0;
for(int i=1;i<=n;i++){
dp[i][1]=max(-inf,dp[i-1][0]+a[i]-k);//距离每增加1 余数就增加1 每隔m个 余数0-1 3->4 6->7 带小数上取整
//与商无关 只要隔m个-k就行转移即可 4%2==0 -2k 5%2=1 2.5 -3k 多减1k
dp[i][0]=max(0ll,dp[i-1][m-1]+a[i]);
for(int j=2;j<=m-1;j++) //余数1->2 余数m-1->0时相当于 5%3=2 -2k 6%3=0 -2k不变 商增加但无余数
{ //m为1不行
dp[i][j]=max(-inf,dp[i-1][j-1]+a[i]);
}
}
for(int i=1;i<=n;i++){
for(int j=0;j<=m-1;j++){
ans=max(ans,dp[i][j]);
}
}
cout<<ans<<endl;
return 0;
}