1、为什么要调整学习率 神经网络 参数更新的机制是-梯度下降+反向传播,将输出误差 反向传播 给网络参数,以此来拟合样本的输出。本质上是最优化的一个过程,逐步趋向于最优解。但是每一次更新参数利用多少误差,就需要通过一个参数来控制,这个参数就是学习率(Learning rate),也称为步长。 学习率是 神经网络 优化时的重要超参数。学习率α的取值非常关键,学习率越大则权重更新的越快。在梯度下降方法中,如果过大就不会收敛,如果过小则收敛速度太慢。学习率越大,输出误差对参数的影响就越大,