数据科学家

本文探讨数据领域面临的十大挑战,包括Python包创建、R语言应用、Spark作业优化、数据及模型版本控制、数据湖管理、大规模时间序列预测、JupyterNotebook共享、数据清理系统探索等,旨在为数据科学家和工程师提供实用的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是你在数据领域需要解决的一些问题:

1)创建 Python 包

2)将 R 语言用在生产环境中

3)优化 Spark 作业,使其更有效地运行

4)对数据进行版本控制

5)让模型和数据可重现

6)对 SQL 进行版本控制

7)在数据湖中建立和维护干净的数据

8)大规模时间序列预测工具

9)共享 Jupyter Notebook

10)寻找可用于清理数据的系统

11)JSON

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值