数据科学家

本文探讨数据领域面临的十大挑战,包括Python包创建、R语言应用、Spark作业优化、数据及模型版本控制、数据湖管理、大规模时间序列预测、JupyterNotebook共享、数据清理系统探索等,旨在为数据科学家和工程师提供实用的指导。

以下是你在数据领域需要解决的一些问题:

1)创建 Python 包

2)将 R 语言用在生产环境中

3)优化 Spark 作业,使其更有效地运行

4)对数据进行版本控制

5)让模型和数据可重现

6)对 SQL 进行版本控制

7)在数据湖中建立和维护干净的数据

8)大规模时间序列预测工具

9)共享 Jupyter Notebook

10)寻找可用于清理数据的系统

11)JSON

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值